1887

Abstract

A polyphasic taxonomic study was performed on a pink-coloured unknown bacterium isolated from discarded road tar. Comparative analysis of the 16S rRNA gene sequence demonstrated that the isolate belongs phylogenetically to the genus with , and as its closest phylogenetic relatives (96.7, 96.6 and 96.6 % similarity to the respective type strains). The generic assignment was confirmed on the basis of chemotaxonomic data, which revealed a fatty acid profile characteristic for the genus , consisting of straight-chain saturated and unsaturated fatty acids, with C 7 as the major unsaturated non-hydroxylated fatty acid, and C 3-OH as the major hydroxylated fatty acid, and a ubiquinone with ten isoprene units (Q-10) as the predominant respiratory quinone. On the basis of both the phenotypic and molecular genetic evidence, it is proposed that the unknown isolate should be classified within a novel species of the genus , for which the name sp. nov. is proposed. The type strain is IMMIB TAR-3 (=CCUG 55431 =DSM 19922).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65837-0
2009-04-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/4/761.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65837-0&mimeType=html&fmt=ahah

References

  1. Bally, R., Thomas-Bauzon, D., Heulin, T., Balandreau, J., Richard, C. & De Ley, J. ( 1983; ). Determination of the frequent N2-fixing bacteria in a rice rhizosphere. Can J Microbiol 29, 881–887.[CrossRef]
    [Google Scholar]
  2. Bashan, Y. & Holguin, G. ( 1997; ). Azospirillum-plant relationships: environmental and physiological advances (1990–1996). Can J Microbiol 43, 103–121.[CrossRef]
    [Google Scholar]
  3. Ben Dekhil, S., Cahill, M., Stackebrandt, E. & Sly, L. I. ( 1997; ). Transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum as Azospirillum largomobile comb. nov., and elevation of Conglomeromonas largomobilis subsp. parooensis to the new type species of Conglomeromonas, Conglomeromonas parooensis sp. nov. Syst Appl Microbiol 20, 72–77.[CrossRef]
    [Google Scholar]
  4. Burris, R. H. ( 1972; ). Nitrogen fixation – assay methods and techniques. Methods Enzymol 24, 415–431.
    [Google Scholar]
  5. Collins, M. D., Pirouz, T., Goodfellow, M. & Minnikin, D. E. ( 1977; ). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100, 221–230.[CrossRef]
    [Google Scholar]
  6. Döbereiner, J. ( 1983; ). Ten years of Azospirillum. In Azospirillum II: Genetics, Physiology, Ecology, pp. 9–23. Edited by W. Klingmueller. Basel: Birkhaeuser.
  7. Döbereiner, J., Marriel, I. E. & Nery, M. ( 1976; ). Ecological distribution of Spirillum lipoferum Beijerinck. Can J Microbiol 22, 1464–1467.[CrossRef]
    [Google Scholar]
  8. Eckert, B., Weber, O. B., Kirchhof, G., Halbritter, A., Stoffels, M. & Hartmann, A. ( 2001; ). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51, 17–26.
    [Google Scholar]
  9. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  10. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  11. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  12. Gunarto, L., Adachi, K. & Senboku, T. ( 1999; ). Isolation and selection of indigenous Azospirillum spp. from a subtropical island, and effect of inoculation on growth of lowland rice under several levels of N application. Biol Fertil Soils 28, 129–135.
    [Google Scholar]
  13. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  14. Khammas, K. M., Ageron, E., Grimont, P. A. D. & Kaiser, P. ( 1989; ). Azospirillum irakense sp. nov., a new nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140, 679–693.
    [Google Scholar]
  15. Kirchhof, G., Reis, V. M., Baldani, J. I., Eckert, B., Doebereiner, J. & Hartmann, A. ( 1997; ). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194, 45–55.[CrossRef]
    [Google Scholar]
  16. Ladha, J. K., So, R. B. & Watanabe, I. ( 1987; ). Composition of Azospirillum species associated with wetland rice plants grown in different soils. Plant Soil 102, 127–129.[CrossRef]
    [Google Scholar]
  17. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  18. Magalhães, F. M., Baldani, J. I., Souto, S. M., Kuykendall, J. R. & Döbereiner, J. ( 1983; ). A new acid-tolerant Azospirillum species. An Acad Bras Cienc 55, 417–430.
    [Google Scholar]
  19. Mehnaz, S. & Lazarovits, G. ( 2006; ). Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51, 326–335.[CrossRef]
    [Google Scholar]
  20. Mehnaz, S., Weselowski, B. & Lazarovits, G. ( 2007a; ). Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57, 620–624.[CrossRef]
    [Google Scholar]
  21. Mehnaz, S., Weselowski, B. & Lazarovits, G. ( 2007b; ). Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int J Syst Evol Microbiol 57, 2805–2809.[CrossRef]
    [Google Scholar]
  22. Minnikin, D. E., Hutchinson, I. G., Caldicott, A. B. & Goodfellow, M. ( 1980; ). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A 188, 221–223.[CrossRef]
    [Google Scholar]
  23. Muratova, A. Iu., Turkovskaia, O. V., Antoniuk, L. P., Makarov, O. E., Pozdniakova, L. I. & Ignatov, V. V. ( 2005; ). Oil-oxidizing potential of associative rhizobacteria of the genus Azospirillum. Mikrobiologiia 74, 248–254 (in Russian).
    [Google Scholar]
  24. Okon, Y. ( 1985; ). Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3, 223–228.[CrossRef]
    [Google Scholar]
  25. Peng, G., Wang, H., Zhang, G., Hou, W., Liu, Y., Wang, E. T. & Tan, Z. ( 2006; ). Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56, 1263–1271.[CrossRef]
    [Google Scholar]
  26. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  27. Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., Thielemans, S. & De Ley, J. ( 1987; ). Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37, 43–51.[CrossRef]
    [Google Scholar]
  28. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  29. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  30. Tarrand, J. J., Krieg, N. R. & Döbereiner, J. ( 1978; ). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24, 967–980.[CrossRef]
    [Google Scholar]
  31. Xie, C.-H. & Yokota, A. ( 2005; ). Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55, 1435–1438.[CrossRef]
    [Google Scholar]
  32. Yassin, A. F. & Hupfer, H. ( 2006; ). Williamsia deligens sp. nov., isolated from human blood. Int J Syst Evol Microbiol 56, 193–197.[CrossRef]
    [Google Scholar]
  33. Yassin, A. F., Chen, W.-M., Hupfer, H., Siering, C., Kroppenstedt, R. M., Arun, A. B., Lai, W.-A., Shen, F.-T., Rekha, P. D. & Young, C. C. ( 2007; ). Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol 57, 1131–1136.[CrossRef]
    [Google Scholar]
  34. Young, C. C., Hupfer, H., Siering, C., Ho, M.-J., Arun, A. B., Lai, W.-A., Rekha, P. D., Shen, F.-T., Hung, M.-H. & other authors ( 2008; ). Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58, 959–963.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65837-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65837-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 761 - 765

Comparison of the cellular fatty acid contents of strain IMMIB TAR-3 and the type strains of some species. [PDF](67 KB)



PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error