An aerobic, Gram-negative, motile bacterium, strain B51, was isolated from seawater obtained from Semarang Port in Indonesia. Cells of strain B51 were peritrichously flagellated and rod-shaped. Strain B51 was able to degrade alkanes, branched alkanes and alkylnaphthalenes. 16S rRNA gene sequence analysis revealed that strain B51 was affiliated with the family , and was related most closely to TL 2 (94.6 % similarity). The DNA G+C content of strain B51 was 66.5 mol%. The major cellular fatty acids were C 7 (84.9 %), C 9 (13.8 %), C (8.7 %), C (6.4 %) and anteiso-C (5.8 %) and the major quinone was ubiquinone-10. Based on its phenotypic and phylogenetic characteristics, strain B51 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is B51 (=JCM 14837=DSM 19548).


Article metrics loading...

Loading full text...

Full text loading...



  1. Beveridge, T. J., Popkin, T. J. & Cole, R. M.(1994). Electron microscopy. In Methods for General and Molecular Bacteriology, pp. 42–71. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  2. Chaillan, F., Le Fleche, A., Bury, E., Phantavong, Y. H., Grimont, P., Saliot, A. & Oudot, J.(2004). Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155, 587–595.[CrossRef] [Google Scholar]
  3. de Lima, T. C. S., Grisi, B. M. & Bonato, M. C. M.(1999). Bacteria isolated from a sugarcane agroecosystem: their potential production of polyhydroxyalcanoates and resistance to antibiotics. Rev Microbiol 30, 214–224.[CrossRef] [Google Scholar]
  4. Harwati, T. U., Kasai, Y., Kodama, Y., Susilaningsih, D. & Watanabe, K.(2007). Characterization of diverse hydrocarbon-degrading bacteria from Indonesian seawater. Microbes Environ 22, 412–415.[CrossRef] [Google Scholar]
  5. Kasai, Y., Kishira, H. & Harayama, S.(2002a). Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 68, 5625–5633.[CrossRef] [Google Scholar]
  6. Kasai, Y., Kishira, H., Sasaki, T., Syutsubo, K., Watanabe, K. & Harayama, S.(2002b). Predominant growth of Alkanivorax strains in oil-contaminated nutrient-supplemented seawater. Environ Microbiol 4, 141–147.[CrossRef] [Google Scholar]
  7. Katayama-Fujimura, Y., Komatsu, Y., Kuraishi, H. & Kaneko, T.(1984). Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48, 3169–3172.[CrossRef] [Google Scholar]
  8. Kumar, S., Tamura, K. & Nei, M.(2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  9. Maidak, B. L., Cole, J. R., Parker, C. T., Jr, Garrity, G. M., Larsen, N., Li, B., Lilburn, T. G., McCaughey, M. J., Olsen, G. J. & other authors(1999). A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27, 171–173.[CrossRef] [Google Scholar]
  10. Malins, D. C., Krahn, M. M., Brown, D. W., Rhodes, L. D., Myers, M. S., McCain, B. B. & Chan, S. L.(1985). Toxic chemicals in marine sediment and biota from Mukilteo, Washington: relationships with hepatic neoplasms and other hepatic lesions in English sole (Parophrys vetulus). J Natl Cancer Inst 74, 487–494. [Google Scholar]
  11. Meador, J. P., Stein, J. E., Reichert, W. L. & Varanasi, U.(1995). Bioaccumulation of polycyclic aromatic hydrocarbons by marine organisms. Rev Environ Contam Toxicol 143, 79–165. [Google Scholar]
  12. Neutzling, O., Imhoff, J. F. & Trüper, H. G.(1984).Rhodopseudomonas adriatica sp. nov., a new species of the Rhodospirillaceae, dependent on reduced sulfur compounds. Arch Microbiol 137, 256–261.[CrossRef] [Google Scholar]
  13. Ozaki, S., Kishimoto, N. & Fujita, T.(2006). Isolation and phylogenetic characterization of microbial consortia able to degrade aromatic hydrocarbons at high rates. Microbes Environ 21, 44–52.[CrossRef] [Google Scholar]
  14. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–655. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  15. Sohn, J. H., Kwon, K. K., Kang, J.-H., Jung, H.-B. & Kim, S.-J.(2004).Novosphingobium pentaromatovorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54, 1483–1487.[CrossRef] [Google Scholar]
  16. Sorokin, D. Y., Tourova, T. P., Spiridonova, E. M., Rainey, F. A. & Muyzer, G.(2005).Thioclava pacifica gen. nov., sp., nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int J Syst Evol Microbiol 55, 1069–1075.[CrossRef] [Google Scholar]
  17. Thompson, J. D., Gibson, T. J., Plewniak, K., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  18. Zhuang, W. Q., Tay, J. H., Maszenan, A. M. & Tay, S. T.(2003). Isolation of naphthalene-degrading bacteria from tropical marine sediments. Water Sci Technol 47, 303–308. [Google Scholar]
  19. Zinjarde, S. S. & Pant, A. A.(2002). Hydrocarbon degraders from tropical marine environments. Mar Pollut Bull 44, 118–121.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error