1887

Abstract

A Gram-negative, strictly aerobic, non-motile, club-shaped bacterial strain, designated CL-ES2, was isolated from coastal water from the east coast of Korea. Phylogenetic analysis of 16S rRNA gene sequences revealed that strain CL-ES2 was related to the genera (95.0–96.6 % similarity to the type strains), (96.1 %) and (95.6 %) in the family . However, strain CL-ES2 did not form a robust clade with any species of the clade, instead forming a distinct subline. The optimum temperature and pH for growth were 25 °C and pH 7. Strain CL-ES2 was able to grow with sea salts at concentrations in the range 2–6 %, with optimum growth occurring at 3–4 %. The major fatty acid was C 7 (75.2 %). The polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, an unidentified aminolipid and three unidentified lipids. The isoprenoid quinone was Q-10. The G+C content of the DNA was 47.0 mol%. On the basis of the data from the polyphasic analysis, strain CL-ES2 represents a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is CL-ES2 (=KCCM 42274 =DSM 18290).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65820-0
2008-09-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/9/2102.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65820-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Buchan, A., González, J. M. & Moran, M. A. ( 2005; ). Overview of the marine Roseobacter lineage. Appl Environ Microbiol 71, 5665–5677.[CrossRef]
    [Google Scholar]
  3. Choi, D. H. & Cho, B. C. ( 2006; ). Citreimonas salinaria gen. nov., sp. nov., a member of the Roseobacter clade isolated from a solar saltern. Int J Syst Evol Microbiol 56, 2799–2803.[CrossRef]
    [Google Scholar]
  4. Collins, M. D. ( 1985; ). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366.
    [Google Scholar]
  5. Englen, M. D. & Kelley, L. C. ( 2000; ). A rapid DNA isolation procedure for the identification of Campylobacter jejuni by the polymerase chain reaction. Lett Appl Microbiol 31, 421–426.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  7. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  8. Garrity, G. M., Bell, J. A. & Lilburn, T. ( 2005; ). Family I. Rhodobacteraceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, part C, pp. 161–229. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  9. Hansen, G. H. & Sørheim, R. ( 1991; ). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef]
    [Google Scholar]
  10. Jeon, Y.-S., Chung, H., Park, S., Hur, I., Lee, J.-H. & Chun, J. ( 2005; ). jPHYDIT: a JAVA-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef]
    [Google Scholar]
  11. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  12. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Labrenz, M., Collins, M. D., Lawson, P. A., Tindall, B. J., Schumann, P. & Hirsch, P. ( 1999; ). Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49, 137–147.[CrossRef]
    [Google Scholar]
  15. Lafay, B., Ruimy, R., Rausch de Traubenberg, C., Breittmayer, V., Gauthier, M. J. & Christen, R. ( 1995; ). Roseobacter algicola sp. nov., a new marine bacterium isolated from the phycosphere of the toxin-producing dinoflagellate Prorocentrum lima. Int J Syst Bacteriol 45, 290–296.[CrossRef]
    [Google Scholar]
  16. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  17. Lanoil, B. D., Carlson, C. A. & Giovannoni, S. J. ( 2000; ). Bacterial chromosomal painting for in situ monitoring of cultured marine bacteria. Environ Microbiol 2, 654–665.[CrossRef]
    [Google Scholar]
  18. Lemos, M. L., Toranzo, A. E. & Barja, J. L. ( 1985; ). Modified medium for the oxidation-fermentation test in the identification of marine bacteria. Appl Environ Microbiol 49, 1541–1543.
    [Google Scholar]
  19. Lyman, J. & Fleming, R. H. ( 1940; ). Composition of sea water. J Mar Res 3, 134–146.
    [Google Scholar]
  20. Martens, T., Heidorn, T., Pukall, R., Simon, M., Tindall, B. J. & Brinkhoff, T. ( 2006; ). Reclassification of Roseobacter gallaeciensis Ruiz-Ponte et al. 1998 as Phaeobacter gallaeciensis gen. nov., comb. nov., description of Phaeobacter inhibens sp. nov., reclassification of Ruegeria algicola (Lafay et al. 1995) Uchino et al. 1998 as Marinovum algicola gen. nov., comb. nov., and emended descriptions of the genera Roseobacter, Ruegeria and Leisingera. Int J Syst Evol Microbiol 56, 1293–1304.[CrossRef]
    [Google Scholar]
  21. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  22. Ostle, A. G. & Holt, J. G. ( 1982; ). Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241.
    [Google Scholar]
  23. Posada, D. & Crandall, K. A. ( 1998; ). modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef]
    [Google Scholar]
  24. Ruiz-Ponte, C., Cilia, V., Lambert, C. & Nicolas, J. L. ( 1998; ). Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus. Int J Syst Bacteriol 48, 537–542.[CrossRef]
    [Google Scholar]
  25. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  26. Schaefer, J. K., Goodwin, K. D., McDonald, I. R., Murrell, J. C. & Oremland, R. S. ( 2002; ). Leisingera methylohalidivorans gen. nov., sp. nov., a marine methylotroph that grows on methyl bromide. Int J Syst Evol Microbiol 52, 851–859.[CrossRef]
    [Google Scholar]
  27. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  28. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S. ( 2001; ). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef]
    [Google Scholar]
  29. Swofford, D. L., ( 1998; ). paup: Phylogenetic analysis using parsimony, version 4. Sunderland, MA: Sinauer Associates.
  30. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  31. Yi, H. & Chun, J. ( 2004; ). Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54, 1295–1299.[CrossRef]
    [Google Scholar]
  32. Yoon, J.-H., Kang, S.-J., Lee, S.-Y. & Oh, T.-K. ( 2007; ). Phaeobacter daeponensis sp. nov., isolated from a tidal flat of the Yellow Sea in Korea. Int J Syst Evol Microbiol 57, 856–861.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65820-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65820-0
Loading

Data & Media loading...

Supplements

Neighbour-joining phylogenetic tree, based on 16S rRNA gene sequences, for strain CL-ES2 and most members of the family . [ PDF] 71 KB

PDF

Polar lipid composition of strain CL-ES2 . The TLC plate was sprayed with molybdatophosphoric acid. AL, Unidentified aminolipid; L1–L3, unidentified lipids; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PG, phosphatidylglycerol.

IMAGE

Cells of strain CL-ES2 in exponential phase (a) and stationary phase (d) stained with DAPI. [ PDF] 56 KB

PDF

Whole-cell fatty acid compositions of strain CL-ES2 and members of the genera , and . [ PDF] 42 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error