is a sheathed bacterium often found in metal-rich and oligotrophic aquatic environments. A bacterial strain that is able to degrade the NaOH-treated sheath of was isolated. The isolate was a Gram-negative, aerobic and prosthecate bacterium. The optimum growth temperature and pH were 30 °C and pH 7.0, respectively. The DNA G+C content was 62.9 mol%. The major respiratory quinone was MK-6. A phylogenetic analysis based on the 16S rRNA gene indicated that the isolate is a member of the genus . The nearest relative was the type strain of , with a similarity of 97.1 %. However, the isolate does not possess the bacterial tubulin genes, and , unique to known species of the genus . It is proposed that the isolate represents a novel species, sp. nov. The type strain is HAQ-1 (=JCM 14805 =KACC 12649 =KCTC 22182).


Article metrics loading...

Loading full text...

Full text loading...



  1. Eikelboom, D. H.(1975). Filamentous organisms observed in activated sludge. Water Res 9, 365–388.[CrossRef] [Google Scholar]
  2. Emerson, D. & Ghiorse, W. C.(1993). Role of disulfide bonds in maintaining the structural integrity of the sheath of Leptothrix discophora SP-6. J Bacteriol 175, 7819–7827. [Google Scholar]
  3. Ghiorse, W. C. & Ehrlich, H. L.(1992). Microbial biomineralization of iron and manganese. In Biomineralization Processes, pp. 75–99. Edited by H. C. W. Skinner & R. W. Fitzpatrick. Cremlingen-Destedt, Germany: Catena Verlag.
  4. Hallbeck, L., Ståhl, F. & Pedersen, K.(1993). Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea. J Gen Microbiol 139, 1531–1535.[CrossRef] [Google Scholar]
  5. Hedlund, B. P., Gosink, J. J. & Staley, J. T.(1996). Phylogeny of Prosthecobacter, the fusiform caulobacters: members of a recently discovered division of the Bacteria. Int J Syst Bacteriol 46, 960–966.[CrossRef] [Google Scholar]
  6. Hedlund, B. P., Gosink, J. J. & Staley, J. T.(1997). Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek 72, 29–38.[CrossRef] [Google Scholar]
  7. Jenkins, C., Samudrala, R., Anderson, I., Hedlund, B. P., Petroni, G., Michailova, N., Pinel, N., Overbeek, R., Rosati, G. & Staley, J. T.(2002). Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Natl Acad Sci U S A 99, 17049–17054.[CrossRef] [Google Scholar]
  8. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  9. Makita, H., Nakahara, Y., Fukui, H., Miyanoiri, Y., Katahira, M., Seki, H., Takeda, M. & Koizumi, J.(2006). Identification of 2-(cysteinyl)amido-2-deoxy-d-galacturonic acid residue from the sheath of Leptothrix cholodnii. Biosci Biotechnol Biochem 70, 1265–1268.[CrossRef] [Google Scholar]
  10. Pilhofer, M., Rosati, G., Ludwig, W., Schleifer, K. H. & Petroni, G.(2007). Coexistence of tubulins and ftsZ in different Prosthecobacter species. Mol Biol Evol 24, 1439–1442.[CrossRef] [Google Scholar]
  11. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  12. Schlieper, D., Oliva, M. A., Andreu, J. M. & Löwe, J.(2005). Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci U S A 102, 9170–9175.[CrossRef] [Google Scholar]
  13. Sontag, C. A., Staley, J. T. & Erickson, H. P.(2005). In vitro assembly and GTP hydrolysis by bacterial tubulins BtubA and BtubB. J Cell Biol 169, 233–238.[CrossRef] [Google Scholar]
  14. Staley, J. T. & Mandel, M.(1973). Deoxyribonucleic acid base composition of Prosthecomicrobium and Ancalomicrobium strains. Int J Syst Bacteriol 23, 271–273.[CrossRef] [Google Scholar]
  15. Staley, J. T., de Bont, J. A. M. & de Jonge, K.(1976).Prosthecobacter fusiformis nov. gen. et sp., the fusiform caulobacter. Antonie van Leeuwenhoek 42, 333–342.[CrossRef] [Google Scholar]
  16. Takeda, M., Nakano, F., Nagase, T., Iohara, K. & Koizumi, J.(1998). Isolation and chemical composition of the sheath of Sphaerotilus natans. Biosci Biotechnol Biochem 62, 1138–1143.[CrossRef] [Google Scholar]
  17. Takeda, M., Kamagata, Y., Shinmaru, S., Nishiyama, T. & Koizumi, J.(2002).Paenibacillus koleovorans sp. nov., able to grow on the sheath of Sphaerotilus natans. Int J Syst Evol Microbiol 52, 1597–1601.[CrossRef] [Google Scholar]
  18. Takeda, M., Nakamori, T., Hatta, M., Yamada, H. & Koizumi, J.(2003). Structure of the polysaccharide isolated from the sheath of Sphaerotilus natans. Int J Biol Macromol 33, 245–250.[CrossRef] [Google Scholar]
  19. Takeda, M., Suzuki, I. & Koizumi, J.(2004).Balneomonas flocculans gen. nov., sp. nov., a new cellulose-producing member of the alpha-2 subclass of Proteobacteria. Syst Appl Microbiol 27, 139–145.[CrossRef] [Google Scholar]
  20. Takeda, M., Makita, H., Ohno, K., Nakahara, Y. & Koizumi, J.(2005). Structural analysis of the sheath of a sheathed bacterium, Leptothrix cholodnii. Int J Biol Macromol 37, 92–98.[CrossRef] [Google Scholar]
  21. van Ert, M. & Staley, J. T.(1971). Gas-vacuolated strains of Microcyclus aquaticus. J Bacteriol 108, 236–240. [Google Scholar]
  22. van Veen, W. L., Mulder, E. G. & Deinema, M. H.(1978). The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42, 329–356. [Google Scholar]

Data & Media loading...


vol. , part 7, pp. 1561 - 1565

Typical time-course of mucopolysaccharide degradation and growth of strain HAQ-1 .

Binding positions of PCR primers designed for amplification of the gene.

Binding positions of PCR primers designed for amplification of the gene.

[PDF file of Supplementary Figs S1-S3](83 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error