1887

Abstract

A gamma- and UV-radiation-tolerant, pale-pink strain (TDMA-uv53) was isolated from a freshwater sample collected at Misasa (Tottori, Japan), after exposure of the water sample to UV radiation. The cells stained Gram-positive and were non-motile, rod-shaped and non-spore-forming. The DNA G+C content of the strain was 69.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain TDMA-uv53 belongs to the genus , the highest sequence similarities being found with PO-04-19-125 (96 %), ME-04-01-32 (96 %), PO-04-20-132 (95 %), VCD115 (91.5 %), KR-140 (91.0 %) and KR-87 (91.0 %). Major fatty acids were iso-15 : 0, 15 : 16, 15 : 0, 16 : 0 and summed feature 3 (iso-15 : 0 2-OH and/or 16 : 17). MK-8 was the predominant respiratory quinone. Phylogenetic distinctiveness and unique phenotypic characteristics differentiated strain TDMA-uv53 from closely related species. The results of our polyphasic taxonomic analyses suggested that TDMA-uv53 represents a novel species, for which the name sp. nov. is proposed. The type strain is TDMA-uv53 (=JCM 14370 =NBRC 102118 =CCUG 53612).

Erratum
This article contains a correction applying to the following content:
Corrigendum: sp. nov., isolated from a radioactive site in Japan
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65762-0
2009-01-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/1/144.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65762-0&mimeType=html&fmt=ahah

References

  1. Anderson, A. W., Nordon, H. C., Cain, R. F., Parrish, G. & Duggan, D. ( 1956; ). Studies on a radio-resistant micrococcus. I. Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol 10, 575–578.
    [Google Scholar]
  2. Asker, D., Beppu, T. & Ueda, K. ( 2007a; ). Unique diversity of carotenoid-producing bacteria isolated from Misasa, a radioactive site in Japan. Appl Microbiol Biotechnol 77, 383–392.[CrossRef]
    [Google Scholar]
  3. Asker, D., Beppu, T. & Ueda, K. ( 2007b; ). Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int J Syst Evol Microbiol 57, 837–843.[CrossRef]
    [Google Scholar]
  4. Asker, D., Beppu, T. & Ueda, K. ( 2007c; ). Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 57, 1435–1441.[CrossRef]
    [Google Scholar]
  5. Asker, D., Beppu, T. & Ueda, K. ( 2007d; ). Sphingomonas astaxanthinifaciens sp. nov., a novel astaxanthin-producing bacterium of the family Sphingomonadaceae isolated from Misasa, Tottori, Japan. FEMS Microbiol Lett 273, 140–148.[CrossRef]
    [Google Scholar]
  6. Asker, D., Beppu, T. & Ueda, K. ( 2007e; ). Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst Appl Microbiol 30, 291–296.[CrossRef]
    [Google Scholar]
  7. Barrow, G. I. & Feltham, R. K. A. ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. London: Cambridge University Press.
  8. Battista, J. R. & Rainey, F. A. ( 2001a; ). Family I. Deinococcaceae Brooks and Murray 1981, 356,VP emend. Rainey, Nobre, Schumann, Stackebrandt and da Costa 1997, 513. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 395–396. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  9. Battista, J. R. & Rainey, F. A. ( 2001b; ). Genus I. Deinococcus Brooks and Murray 1981, 354,VP emend. Rainey, Nobre, Schumann, Stackebrandt and da Costa 1997, 513. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 396–403. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  10. Brooks, B. W. & Murray, R. G. E. ( 1981; ). Nomenclature for “Micrococcus radiodurans” and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 31, 353–360.[CrossRef]
    [Google Scholar]
  11. Callegan, R. P., Nobre, M. F., McTernan, P. M., Battista, J. R., Navarro-González, R., McKay, C. P., da Costa, M. S. & Rainey, F. A. ( 2008; ). Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 58, 1252–1258.[CrossRef]
    [Google Scholar]
  12. Christensen, E. A. & Kristensen, H. ( 1981; ). Radiation-resistance of micro-organisms from air in clean premises. Acta Pathol Microbiol Scand [B] 89, 293–301.
    [Google Scholar]
  13. Collins, M. D. ( 1994; ). Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics, pp. 265–310. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  14. Davis, N. S., Silverman, G. J. & Masurovsky, E. B. ( 1963; ). Radiation-resistant, pigmented coccus isolated from haddock tissue. J Bacteriol 86, 294–298.
    [Google Scholar]
  15. de Groot, A., Chapon, V., Servant, P., Christen, R., Saux, M. F., Sommer, S. & Heulin, T. ( 2005; ). Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 55, 2441–2446.[CrossRef]
    [Google Scholar]
  16. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  17. Ferreira, A. C., Nobre, M. F., Rainey, F. A., Silva, M. T., Wait, R., Burghardt, J., Chung, A. P. & da Costa, M. S. ( 1997; ). Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47, 939–947.[CrossRef]
    [Google Scholar]
  18. Halliwell, B. ( 1996; ). Free radicals, proteins and DNA: oxidative damage versus redox regulation. Biochem Soc Trans 24, 1023–1027.
    [Google Scholar]
  19. Hirsch, P., Gallikowski, C. A., Siebert, J., Peissl, K., Kroppenstedt, R., Schumann, P., Stackebrandt, E. & Anderson, R. ( 2004; ). Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 27, 636–645.[CrossRef]
    [Google Scholar]
  20. Kametani, K. & Matsumura, T. ( 1983; ). Determination of 238U, 234U, 226Ra and 228Ra in spring waters of Sanin district. Radioisotopes 32, 18–21 (in Japanese).[CrossRef]
    [Google Scholar]
  21. Kobatake, M., Tanabe, S. & Hasegawa, S. ( 1973; ). New Micrococcus radioresistant red pigment, isolated from Lama glama feces, and its use as a microbiological indicator of radiosterilization. C R Seances Soc Biol Fil 167, 1506–1510 (in French).
    [Google Scholar]
  22. Lai, W. A., Kämpfer, P., Arun, A. B., Shen, F. T., Huber, B., Rekha, P. D. & Young, C. C. ( 2006; ). Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 56, 787–791.[CrossRef]
    [Google Scholar]
  23. Mesbah, M. & Whitman, W. B. ( 1989; ). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr 479, 297–306.[CrossRef]
    [Google Scholar]
  24. O'Brien, M. & Colwell, R. ( 1987; ). Characterization tests for numerical taxonomic studies. Methods Microbiol 19, 69–104.
    [Google Scholar]
  25. Perrière, G. & Gouy, M. ( 1996; ). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369.[CrossRef]
    [Google Scholar]
  26. Rainey, F. A., Nobre, M. F., Schumann, P., Stackebrandt, E. & da Costa, M. S. ( 1997; ). Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 47, 510–514.[CrossRef]
    [Google Scholar]
  27. Rainey, F. A., Ray, K., Ferreira, M., Gatz, B. Z., Nobre, M. F., Bagaley, D., Rash, B. A., Park, M. J., Earl, A. M. & other authors ( 2005; ). Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71, 5225–5235.[CrossRef]
    [Google Scholar]
  28. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  29. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  30. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization, In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington: DC: American Society for Microbiology.
  31. Suresh, K., Reddy, G. S., Sengupta, S. & Shivaji, S. ( 2004; ). Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 54, 457–461.[CrossRef]
    [Google Scholar]
  32. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  33. Tindall, B. J. ( 1990; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  34. Zhang, Y. Q., Sun, C. H., Li, W. J., Yu, L. Y., Zhou, J. Q., Zhang, Y. Q., Xu, L. H. & Jiang, C. L. ( 2007; ). Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 57, 370–375.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65762-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65762-0
Loading

Data & Media loading...

Supplements

[PDF file of Supplementary Figs S1 and S2](76 KB)

PDF

Scanning electron micrograph of cells of strain TDMA-uv53 grown for 3 days on NA agar at 37 °C. Cells are long rods, occurring singly, in pairs or short chains. Bar, 1.0 µm.

IMAGE

[PDF file of Supplementary Tables S1 and S2](228 KB)

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error