1887

Abstract

An actinobacterium, designated strain 44C3, was isolated in Michigan, USA, from the hindgut of the larvae of , an aquatic crane fly, and was subjected to a polyphasic taxonomic investigation. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the strain represented a separate clade within the family . It showed highest 16S rRNA gene sequence similarity with 0549 (96.5 %). Strain 44C3 had a novel B-type peptidoglycan. The peptidoglycan contained the diamino acid lysine, the peptide Gly–-Glu was detected in the partial hydrolysate and alanine was the N terminus of the interpeptide bridge. No other amino acids found in other B-type peptidoglycans (including diaminobutyric acid, ornithine, homoserine and hydroxyglutamic acid) could be detected. The major menaquinones were MK-12 and MK-11, the major fatty acids were ai-C, ai-C and i-C and the DNA G+C content was 60.9 mol%. Analysis of the chemotaxonomic and phylogenetic data suggested that strain 44C3 represented a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is 44C3 (=DSM 18031 =ATCC BAA-1524).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65748-0
2008-12-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/12/2779.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65748-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  2. Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. ( 2005; ). GenBank. Nucleic Acids Res 33, D34–D38.[CrossRef]
    [Google Scholar]
  3. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  4. Cook, D. M., Henriksen, E. D., Upchurch, R. & Peterson, J. B. D. ( 2007; ). Isolation of polymer-degrading bacteria and characterization of the hindgut bacterial community from the detritus-feeding larvae of Tipula abdominalis (Diptera: Tipulidae). Appl Environ Microbiol 73, 5683–5686.[CrossRef]
    [Google Scholar]
  5. Groth, I., Schumann, P., Weiss, N., Martin, K. & Rainey, F. A. ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46, 234–239.[CrossRef]
    [Google Scholar]
  6. Haack, S. K., Garchow, H., Odelson, D. A., Forney, L. J. & Klug, M. J. ( 1994; ). Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60, 2483–2493.
    [Google Scholar]
  7. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  8. Kämpfer, P., Rainey, F. A., Andersson, M. A., Nurmiaho Lassila, E.-L., Ulrych, U., Busse, H.-J., Weiss, N., Mikkola, R. & Salkinoja-Salonen, M. ( 2000; ). Frigoribacterium faeni gen. nov., sp. nov., a novel psychrophilic genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 50, 355–363.[CrossRef]
    [Google Scholar]
  9. Klug, M. J. & Kotarski, S. ( 1980; ). Bacteria associated with the gut tract of larval stages of the aquatic cranefly Tipula abdominalis (Diptera: Tipulidae). Appl Environ Microbiol 40, 408–416.
    [Google Scholar]
  10. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  11. Lawson, D. L. & Klug, M. J. ( 1989; ). Microbial fermentation in the hindgut of two stream detritivores. J N Am Benthol Soc 8, 85–91.[CrossRef]
    [Google Scholar]
  12. Mesbah, M., Premachandran, U. & Whitman, W. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  13. Nicholas, K. B., Nicholas, H. B., Jr & Deerfield, D. W., II ( 1997; ). GeneDoc: analysis and visualization of genetic variation. EMBnet News 4 (2), 1–4 http://www.embnet.org/download/embnetnews/embnet_news_4_2.pdf
    [Google Scholar]
  14. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  15. Schleifer, K. H. ( 1985; ). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156.
    [Google Scholar]
  16. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  17. Staneck, J. L. & Roberts, G. D. ( 1974; ). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28, 226–231.
    [Google Scholar]
  18. Suzuki, K., Sasaki, J., Uramoto, M., Nakase, T. & Komagata, K. ( 1997; ). Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic actinomycete to accommodate “Curtobacterium psychrophilum” Inoue and Komagata 1976. Int J Syst Bacteriol 47, 474–478.[CrossRef]
    [Google Scholar]
  19. Takeuchi, M. & Hatano, K. ( 1998; ). Proposal of six new species in the genus Microbacterium and transfer of Flavobacterium marinotypicum ZoBell and Upham to the genus Microbacterium as Microbacterium maritypicum comb. nov. Int J Syst Bacteriol 48, 973–982.[CrossRef]
    [Google Scholar]
  20. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  22. Tiago, I., Pires, C., Mendes, V., Morais, P. V., da Costa, M. & Veríssimo, A. ( 2005; ). Microcella putealis gen. nov., sp. nov., a Gram-positive alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 28, 479–487.[CrossRef]
    [Google Scholar]
  23. Tsukamoto, T., Takeuchi, M., Shida, O., Murata, H. & Shirata, A. ( 2001; ). Proposal of Mycetocola gen. nov. in the family Microbacteriaceae and three new species, Mycetocola saprophilus sp. nov., Mycetocola tolaasinivorans sp. nov. and Mycetocola lacteus sp. nov., isolated from cultivated mushroom, Pleurotus ostreus. Int J Syst Evol Microbiol 51, 937–944.[CrossRef]
    [Google Scholar]
  24. Uchida, K., Kudo, T., Suzuki, K. & Nakase, T. ( 1999; ). A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 45, 49–56.[CrossRef]
    [Google Scholar]
  25. Visuvanathan, S., Moss, M. T., Standord, J. L., Hermon-Taylor, J. & McFadden, J. J. ( 1989; ). Simple enzymatic method for isolation of DNA from diverse bacteria. J Microbiol Methods 10, 59–64.[CrossRef]
    [Google Scholar]
  26. Yokota, A., Takeuchi, M. & Weiss, N. ( 1993a; ). Proposal of two new species in the genus Microbacterium: Microbacterium dextranolyticum sp. nov., and Microbacterium aurum sp. nov. Int J Syst Bacteriol 43, 549–554.[CrossRef]
    [Google Scholar]
  27. Yokota, A., Takeuchi, M., Sakane, T. & Weiss, N. ( 1993b; ). Proposal of six new species in the genus Aureobacterium and transfer of Flavobacterium esteraromaticum Omelianski to the genus Aureobacterium as Aureobacterium esteraromaticum comb. nov. Int J Syst Bacteriol 43, 555–564.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65748-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65748-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2779 - 2782

Minimum-evolution phylogenetic dendrogram based on 16S rRNA gene sequence similarity, showing the position of strain 44C3 among its phylogenetic neighbours. [PDF](390 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error