1887

Abstract

A Gram-negative, moderately halophilic, short rod-shaped, aerobic bacterium with peritrichous flagellae, strain DQD2-30, was isolated from a soil sample contaminated with crude oil from the Daqing oilfield in Heilongjiang Province, north-eastern China. The novel strain was capable of growth at NaCl concentrations of 1–15 % (w/v) [optimum at 5–10 % (w/v)]. Phylogenetic analyses based on 16S rRNA gene sequences showed that the novel strain belonged to the genus in the class ; the highest 16S rRNA gene sequence similarities were with DSM 9502 (98.8 %), A4 (96.6 %) and CGMCC 1.6133 (95.1 %). The major cellular fatty acids of strain DQD2-30 were C 7 (43.97 %), Ccyclo 8 (23.37 %) and C (14.83 %). The predominant respiratory lipoquinone was ubiquinone with nine isoprene units (Q9). The DNA G+C content was 67.0 mol%. The DNA–DNA hybridization values of strain DQD2-30 with the most closely related species of the genus were 51.8 %, 28.4 % and 23.5 % for , and , respectively. Based on these analyses, strain DQD2-30(=CGMCC 1.6443=LMG 23896) is proposed to represent the type strain of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65746-0
2008-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/12/2859.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65746-0&mimeType=html&fmt=ahah

References

  1. Barritt, M. M. ( 1936; ). The intensification of the Voges-Proskauer reaction by the addition of α-naphthol. J Pathol Bacteriol 42, 441–454.[CrossRef]
    [Google Scholar]
  2. Berendes, F., Gottschalk, G., Heine-Dobbernack, E., Moore, E. R. B. & Tindall, B. J. ( 1996; ). Halomonas desiderata sp. nov., a new alkaliphilic, halotolerant and denitrifying bacterium isolated from a municipal sewage works. Syst Appl Microbiol 19, 158–167.[CrossRef]
    [Google Scholar]
  3. Bouchotroch, S., Quesada, E., Del Moral, A., Llamas, I. & Béjar, V. ( 2001; ). Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51, 1625–1632.[CrossRef]
    [Google Scholar]
  4. Clarke, P. H. ( 1953; ). Hydrogen sulphide production by bacteria. J Gen Microbiol 8, 397–407.[CrossRef]
    [Google Scholar]
  5. Collins, M. D., Goodfellow, M. & Minnikin, D. E. ( 1980; ). Fatty acid isoprenoid quinine and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 118, 29–37.
    [Google Scholar]
  6. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  7. Dobson, S. J. & Franzmann, P. D. ( 1996; ). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef]
    [Google Scholar]
  8. Dong, X.-Z. & Cai, M.-Y. ( 2001; ). Manual of Determinative Bacteriology, pp. 370. Peking: Science Publishing Press.
  9. Eguchi, M., Nishikawa, T. & Macdonald, K. ( 1996; ). Responses to stress and nutrient availability by the marine ultramicrobacterium Sphingomonas sp. strain RB2256. Appl Environ Microbiol 62, 1287–1294.
    [Google Scholar]
  10. Embley, T. M. ( 1991; ). The linear PCR reaction: a simple and robust method for sequencing amplified rRNA genes. Lett Appl Microbiol 13, 171–174.[CrossRef]
    [Google Scholar]
  11. Franzmann, P. D. & Tindall, B. J. ( 1990; ). A chemotaxonomic study of members of the family Halomonadaceae. Syst Appl Microbiol 13, 142–147.[CrossRef]
    [Google Scholar]
  12. García, M. T., Mellado, E., Ostos, J. C. & Ventosa, A. ( 2004; ). Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54, 1723–1728.[CrossRef]
    [Google Scholar]
  13. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  14. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by P. E. Gerhardt, R. G. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology Press.
  15. Kates, M. ( 1986; ). Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier.
  16. Kaye, J. Z., Márquez, M. C., Ventosa, A. & Baross, J. A. ( 2004; ). Halomonas neptunia sp. nov., Halomonas sulfidaeris sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54, 499–511.[CrossRef]
    [Google Scholar]
  17. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  18. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment briefings. Bioinformatics 5, 150–163.
    [Google Scholar]
  19. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  20. Martínez-Cánovas, M. J., Quesada, E., Llamas, I. & Béjar, V. ( 2004a; ). Halomonas ventosa sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54, 733–737.[CrossRef]
    [Google Scholar]
  21. Martínez-Cánovas, M. J., Béjar, V., Martínez-Checa, F. & Quesada, E. ( 2004b; ). Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Málaga, southern Spain. Int J Syst Evol Microbiol 54, 1329–1332.[CrossRef]
    [Google Scholar]
  22. Martínez-Cánovas, M. J., Quesada, E., Martínez-Checa, F. & Béjar, V. ( 2004c; ). A taxonomic study to establish the relationship between exopolysaccharide-producing bacterial strains living in diverse hypersaline habitats. Curr Microbiol 48, 348–353.[CrossRef]
    [Google Scholar]
  23. Martínez-Checa, F., Béjar, V., Martínez-Cánovas, M. J., Llamas, I. & Quesada, E. ( 2005; ). Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55, 2007–2011.[CrossRef]
    [Google Scholar]
  24. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  25. Mormile, M. R., Romine, M. F., Garcia, M. T., Ventosa, A., Bailey, T. J. & Peyton, B. M. ( 1999; ). Halomonas campisalis sp. nov., a denitrifying, moderately haloalkaliphilic bacterium. Syst Appl Microbiol 22, 551–558.[CrossRef]
    [Google Scholar]
  26. Romano, I., Nicolaus, B., Lama, L., Manca, M. C. & Gambacorta, A. ( 1996; ). Characterization of a haloalkalophilic strictly aerobic bacterium, isolated from Pantelleria Island. Syst Appl Microbiol 19, 326–333.[CrossRef]
    [Google Scholar]
  27. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  28. Vreeland, R. H., Litchfield, C. D., Martin, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 485–495.[CrossRef]
    [Google Scholar]
  29. Wang, Y.-N., Cai, H., Yu, S.-L., Wang, Z.-Y. & Wu, X.-L. ( 2007; ). Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57, 911–915.[CrossRef]
    [Google Scholar]
  30. Williams, S. T., Goodfellow, M., Alderson, G., Wellington, E. M. H., Sneath, P. H. A. & Sackin, M. J. ( 1983; ). Numerical classification of Streptomyces and related genera. J Gen Microbiol 129, 1743–1813.
    [Google Scholar]
  31. Zumft, W. G. ( 1992; ). The denitrifying bacteria. In The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Application, pp. 554–582. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer Verlag.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65746-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65746-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error