1887

Abstract

In an ongoing attempt to analyse the diversity of culturable micro-organisms from oil-contaminated soil, two yellow-pigmented, Gram-negative, halophilic bacterial strains (SM16 and SM117) were isolated. These two strains were characterized using a polyphasic approach. Strains SM16 and SM117 showed a range of phenotypic and chemotaxonomic properties that were consistent with those of members of the genus . Both strains contained sphingoglycolipids, thus confirming that they belong to the . Furthermore, the polar lipid profile consisted of phosphatidylglycerol, phosphatidyldimethylethanolamine and phosphatidylethanolamine, with minor amounts of phosphatidyldimethylethanolamine, phosphatidylcholine and phosphatidylmonomethylethanolamine. Spermidine was the major polyamine in the cell wall, a characteristic feature of members of the genus . Fatty acid analysis revealed the presence of C 7, C and C 2-OH in both isolates, a characteristic feature of sphingomonads. 16S rRNA gene sequence similarities with the type strains of the most closely related species of the genus ( and ) were less than 98.8 % for both strains. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains SM16 and SM117 fall in the clade represented by the genus . Strains SM16 and SM117 shared 98.8 % similarity in their 16S rRNA gene sequences and their mean level of DNA–DNA relatedness was 8.5 %. Strains SM16 and SM117 differed from each other with respect to their morphological, physiological and chemotaxonomic properties. Thus, these results indicate that strains SM16 and SM117 belong to separate species of the genus , for which the names sp. nov. and sp. nov. are proposed; the type strains are SM16 (=CCM 7472 =MTCC9019) and SM117 (=CCM 7473 =MTCC9020), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65743-0
2009-01-01
2019-11-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/1/156.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65743-0&mimeType=html&fmt=ahah

References

  1. Balkwill, D. L., Drake, G. R., Reeves, R. H., Fredrickson, J. K., White, D. C., Ringelberg, D. B., Chandler, D. P., Romine, M. F., Kennedy, D. W. & Spadoni, C. M. ( 1997; ). Taxonomic study of aromatic-degrading bacteria from deep-terrestrial-subsurface sediments and description of Sphingomonas aromaticivorans sp. nov., Sphingomonas subterranea sp. nov., and Sphingomonas stygia sp. nov. Int J Syst Bacteriol 47, 191–201.[CrossRef]
    [Google Scholar]
  2. Beiss, U. ( 1964; ). Zur papierchromatographischen Auftrennung von Pflanzenlipiden. J Chromatogr 13, 104–110 (in German).[CrossRef]
    [Google Scholar]
  3. Bligh, E. G. & Dyer, W. J. ( 1959; ). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef]
    [Google Scholar]
  4. Bruns, A., Rohde, M. & Berthe-Corti, L. ( 2001; ). Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef]
    [Google Scholar]
  5. Busse, H.-J. & Auling, G. ( 1988; ). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef]
    [Google Scholar]
  6. Busse, H.-J., Bunka, S., Hensel, A. & Lubitz, W. ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47, 698–708.[CrossRef]
    [Google Scholar]
  7. Consden, R. & Gordon, A. H. ( 1948; ). The effect of salt on partition chromatograms. Nature 162, 180 [CrossRef]
    [Google Scholar]
  8. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  9. Dittmer, J. C. F. & Lester, R. L. ( 1964; ). A simple, specific spray for the detection of phospholipids on thin-layer chromatograms. J Lipid Res 5, 126–127.
    [Google Scholar]
  10. Fujii, K., Urano, N., Ushio, H., Satomi, M., Iida, H., Ushio-Sata, N. & Kimura, S. ( 2000; ). Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem 128, 909–916.[CrossRef]
    [Google Scholar]
  11. Gunstone, F. D. & Jacobsberg, F. R. ( 1972; ). Fatty acids, part 35: the preparation and properties of a complete series of methyl epoxyoctadecanoates. Chem Phys Lipids 9, 26–64.[CrossRef]
    [Google Scholar]
  12. Jacin, H. & Mishkin, A. R. ( 1965; ). Separation of carbohydrates on borate impregnated silica gel G plates. J Chromatogr 18, 170–173.
    [Google Scholar]
  13. Jeffries, C. D., Holtmann, D. F. & Guse, D. G. ( 1957; ). Rapid method for determining the activity of microorganisms on nucleic acids. J Bacteriol 73, 590–591.
    [Google Scholar]
  14. Kämpfer, P., Witzenberger, R., Denner, E. B. M., Busse, H.-J. & Neef, A. ( 2002; ). Novosphingobium hassiacum sp. nov., a new species isolated from an aerated sewage pond. Syst Appl Microbiol 25, 37–45.[CrossRef]
    [Google Scholar]
  15. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  16. Kiyohara, H., Nagao, K. & Yana, K. ( 1982; ). Rapid screen for bacteria degrading water-insoluble, solid hydrocarbons on agar plates. Appl Environ Microbiol 43, 454–457.
    [Google Scholar]
  17. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  18. Kushner, D. J. ( 1957; ). An evaluation of the egg-yolk reaction as a test for lecithinase activity. J Bacteriol 73, 297–302.
    [Google Scholar]
  19. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  20. Lal, R., Dogra, C., Malhotra, S., Sharma, P. & Pal, R. ( 2006; ). Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends Biotechnol 24, 121–130.[CrossRef]
    [Google Scholar]
  21. Lányí, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  22. Leifson, E. ( 1962; ). The bacterial flora of distilled and stored water. III. New species of the genera Corynebacterium, Flavobacterium, Spirillum and Pseudomonas. Int Bull Bacteriol Nomencl Taxon 12, 161–170.
    [Google Scholar]
  23. Lim, Y. W., Moon, E. Y. & Chun, J. ( 2007; ). Reclassification of Flavobacterium resinovorum Delaporte and Daste 1956 as Novosphingobium resinovorum comb. nov., with Novosphingobium subarcticum (Nohynek et al. 1996) Takeuchi et al. 2001 as a later heterotypic synonym. Int J Syst Evol Microbiol 57, 1906–1908.[CrossRef]
    [Google Scholar]
  24. Liu, Z.-P., Wang, B.-J., Liu, Y.-H. & Liu, S.-J. ( 2005; ). Novosphingobium taihuense sp. nov., a novel aromatic-compound-degrading bacterium isolated from Taihu Lake, China. Int J Syst Evol Microbiol 55, 1229–1232.[CrossRef]
    [Google Scholar]
  25. Maruyama, T., Park, H.-D., Ozawa, K., Tanaka, Y., Sumino, T., Hamana, K., Hiraishi, A. & Kato, K. ( 2006; ). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. Int J Syst Evol Microbiol 56, 85–89.[CrossRef]
    [Google Scholar]
  26. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  27. Mohn, W. W., Mertens, B., Neufeld, J. D., Verstraete, W. & de Lorenzo, V. ( 2006; ). Distribution and phylogeny of hexachlorocyclohexane-degrading bacteria in soils from Spain. Environ Microbiol 8, 60–68.[CrossRef]
    [Google Scholar]
  28. Nei, M. & Kumar, S. ( 2000; ). Molecular Evolution and Phylogenetics. New York: Oxford University Press.
  29. Pal, R., Bala, S., Dadhwal, M., Kumar, M., Dhingra, G., Prakash, O., Prabagaran, S. R., Shivaji, S., Cullum, J. & other authors ( 2005; ). Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int J Syst Evol Microbiol 55, 1965–1972.[CrossRef]
    [Google Scholar]
  30. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  31. Prakash, O., Kumari, K. & Lal, R. ( 2007; ). Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol 57, 527–531.[CrossRef]
    [Google Scholar]
  32. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  33. Sohn, J. H., Kwon, K. K., Kang, J.-H., Jung, H.-B. & Kim, S.-J. ( 2004; ). Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54, 1483–1487.[CrossRef]
    [Google Scholar]
  34. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A. D., Kämpfer, P., Maiden, M. C. J., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  35. Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. ( 1966; ). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159–271.[CrossRef]
    [Google Scholar]
  36. Takeuchi, M., Sakane, T., Yanagi, M., Yamasato, K., Hamana, K. & Yokota, A. ( 1995; ). Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45, 334–341.[CrossRef]
    [Google Scholar]
  37. Takeuchi, M., Hamana, K. & Hiraishi, A. ( 2001; ). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51, 1405–1417.
    [Google Scholar]
  38. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  39. Tiirola, M. A., Busse, H.-J., Kämpfer, P. & Männistö, M. ( 2005; ). Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process. Int J Syst Evol Microbiol 55, 583–588.[CrossRef]
    [Google Scholar]
  40. Tourova, T. P. & Antonov, A. S. ( 1987; ). Identification of microorganisms by rapid DNA–DNA hybridization. Methods Microbiol 19, 333–355.
    [Google Scholar]
  41. Vanbroekhoven, K., Ryngaert, A., Bastiaens, L., Wattiau, P., Vancanneyt, M., Swings, J., De Mot, R. & Springael, D. ( 2004; ). Streptomycin as a selective agent to facilitate recovery and isolation of introduced and indigenous Sphingomonas from environmental samples. Environ Microbiol 6, 1123–1136.[CrossRef]
    [Google Scholar]
  42. Wagner, H., Hörhammer, L. & Wolff, P. ( 1961; ). Dunnschicht-chromatographie von Phosphatiden und Glykolipiden. Biochem Z 334, 175–184 (in German).
    [Google Scholar]
  43. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  44. Yabuuchi, E., Yano, I., Oyaizu, H., Hashimoto, Y., Ezaki, T. & Yamamoto, H. ( 1990; ). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 34, 99–119.[CrossRef]
    [Google Scholar]
  45. Yabuuchi, E., Kosako, Y., Fujiwara, N., Naka, T., Matsunaga, I., Ogura, H. & Kobayashi, K. ( 2002; ). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 52, 1485–1496.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65743-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65743-0
Loading

Data & Media loading...

Supplements

Transmission electron micrographs of negatively stained cells of strains SM16 (left) and SM117 (right). Strain SM117 shows a single polar flagellum. Bars, 1.0 µm.

IMAGE

Transmission electron micrographs of negatively stained cells of strains SM16 (left) and SM117 (right). Strain SM117 shows a single polar flagellum. Bars, 1.0 µm.

IMAGE

Polar lipid profiles of strains SM16 (left) and SM117 (right) after two-dimensional TLC and detection with molybdatophosphoric acid. PE, Phosphatidylethanolamine; PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; PC, phosphatidylcholine; SGL, sphingoglycolipid; PDE, phosphatidyldimethylethanolamine; PME, phosphatidylmonomethylethanolamine; PDE, phosphatidyldimethylethanolamine; PL , unknown phospholipid; PGL , unknown phosphoglycolipid; GL , unknown glycolipid: P, unknown polar lipid.

IMAGE

Polar lipid profiles of strains SM16 (left) and SM117 (right) after two-dimensional TLC and detection with molybdatophosphoric acid. PE, Phosphatidylethanolamine; PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; PC, phosphatidylcholine; SGL, sphingoglycolipid; PDE, phosphatidyldimethylethanolamine; PME, phosphatidylmonomethylethanolamine; PDE, phosphatidyldimethylethanolamine; PL , unknown phospholipid; PGL , unknown phosphoglycolipid; GL , unknown glycolipid: P, unknown polar lipid.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error