1887

Abstract

Five strains, NBRC 3271, NBRC 3272, NBRC 3263, NBRC 3260 and NBRC 3269 were examined genetically, phylogenetically, phenotypically and chemotaxonomically. The DNA G+C contents of the five strains were 55.1–56.4 mol%. The five strains had low levels of DNA–DNA hybridization of 13–51 % to the type strains of , , , , and and formed a cluster that was separate from the type strains of the six species given above in phylogenetic trees based on 16S rRNA gene and 16S–23S rRNA gene internal transcribed spacer sequences. The five strains weakly produced dihydroxyacetone from glycerol, but not 2,5-diketo--gluconate or a water-soluble brown pigment from -glucose and contained ubiquinone-10. The five strains were assigned as representing a novel species of the genus , for which the name sp. nov. is proposed. The type strain is NBRC 3271 (=BCC 14458=strain 7, K. Kondo). Cells of the type strain are motile by means of polar flagella and the DNA G+C content is 56.4 mol%.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65740-0
2009-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/466.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65740-0&mimeType=html&fmt=ahah

References

  1. Asai, T. ( 1935; ). A taxonomic study and proposal of a new classification method of the acetic acid bacteria and allied oxidative bacteria that exist in fruit (continued). J Agric Chem Soc Jpn 11, 674–708 (in Japanese).
    [Google Scholar]
  2. Asai, T., Iizuka, H. & Komagata, K. ( 1964; ). The flagellation and taxonomy of genera Gluconobacter and Acetobacter with reference to the existence of intermediate strains. J Gen Appl Microbiol 10, 95–126.[CrossRef]
    [Google Scholar]
  3. De Ley, J. ( 1961; ). Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J Gen Microbiol 24, 31–50.[CrossRef]
    [Google Scholar]
  4. Ezaki, T., Yamamoto, N., Ninomiya, K., Suzuki, S. & Yabuuchi, E. ( 1983; ). Transfer of Peptococcus indolicus, Peptococcus asaccharolyticus, Peptococcus prevotii, and Peptococcus magnus to the genus Peptostreptococcus and proposal of Peptostreptococcus tetradius sp. nov. Int J Syst Bacteriol 33, 683–698.[CrossRef]
    [Google Scholar]
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1983; ). Parsimony in systematics: biological and statistical issues. Annu Rev Ecol Syst 14, 313–333.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1995; ). phylip (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Gosselé, F., Swings, J., Kersters, K. & De Ley, J. ( 1983; ). Numerical analysis of phenotypic features and protein gel electropherograms of Gluconobacter Asai 1935 emend. mut. char. Asai, Iizuka and Komagata 1964. Int J Syst Bacteriol 33, 65–81.[CrossRef]
    [Google Scholar]
  11. Huong, V. T. L., Malimas, T., Yukphan, P., Potacharoen, W., Tanasupawat, S., Loan, L. T. T., Tanticharoen, M. & Yamada, Y. ( 2007; ). Identification of Thai isolates assigned to the genus Gluconobacter based on 16S–23S rDNA ITS restriction analysis. J Gen Appl Microbiol 53, 133–142.[CrossRef]
    [Google Scholar]
  12. Katsura, K., Yamada, Y., Uchimura, T. & Komagata, K. ( 2002; ). Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym of Gluconobacter cerinus Yamada and Akita 1984. Int J Syst Evol Microbiol 52, 1635–1640.[CrossRef]
    [Google Scholar]
  13. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  14. Malimas, T., Yukphan, P., Takahashi, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2006; ). Heterogeneity of strains assigned to Gluconobacter frateurii Mason and Claus 1989 based on restriction analysis of 16S–23S rDNA internal transcribed spacer regions. Biosci Biotechnol Biochem 70, 684–690.[CrossRef]
    [Google Scholar]
  15. Malimas, T., Yukphan, P., Takahashi, M., Kaneyasu, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2007; ). Gluconobacter kondonii sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 53, 301–307.[CrossRef]
    [Google Scholar]
  16. Malimas, T., Yukphan, P., Takahashi, M., Kaneyasu, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2008; ). Gluconobacter kondonii Malimas et al. 2008. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List no. 120. Int J Syst Evol Microbiol 58, 529–530.[CrossRef]
    [Google Scholar]
  17. Marmur, J. ( 1961; ). A procedure for isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  18. Mason, L. M. & Claus, G. W. ( 1989; ). Phenotypic characteristics correlated with deoxyribonucleic acid sequence similarities for three species of Gluconobacter: G. oxydans (Henneberg 1897) De Ley 1961, G. frateurii sp. nov. and G. asaii sp. nov. Int J Syst Bacteriol 39, 174–184.[CrossRef]
    [Google Scholar]
  19. Micales, B. K., Johnson, J. L. & Claus, G. W. ( 1985; ). Deoxyribonucleic acid homologies among organisms in the genus Gluconobacter. Int J Syst Bacteriol 35, 79–85.[CrossRef]
    [Google Scholar]
  20. Saito, H. & Miura, K. ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef]
    [Google Scholar]
  21. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  22. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors) 1980; ). Approved lists of bacterial names. Int J Syst Bacteriol 30, 225–420.[CrossRef]
    [Google Scholar]
  23. Takahashi, M., Yukphan, P., Yamada, Y., Suzuki, K., Sakane, T. & Nakagawa, Y. ( 2006; ). Intrageneric structure of the genus Gluconobacter analyzed by the 16S rRNA gene and 16S–23S rRNA gene internal transcribed spacer sequences. J Gen Appl Microbiol 52, 187–193.[CrossRef]
    [Google Scholar]
  24. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  25. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  26. Tanaka, M., Murakami, S., Shinke, R. & Aoki, K. ( 1999; ). Reclassification of the strains with low G+C contents of DNA belonging to the genus Gluconobacter Asai 1935 (Acetobacteraceae). Biosci Biotechnol Biochem 63, 989–992.[CrossRef]
    [Google Scholar]
  27. Tanasupawat, S., Thawai, C., Yukphan, P., Moonmangmee, D., Itoh, T., Adachi, O. & Yamada, Y. ( 2004; ). Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 50, 159–167.[CrossRef]
    [Google Scholar]
  28. Tanasupawat, S., Thawai, C., Yukphan, P., Moonmangmee, D., Itoh, T., Adachi, O. & Yamada, Y. ( 2005; ). Gluconobacter thailandicus Tanasupawat et al. 2005. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM, List no. 103. Int J Syst Evol Microbiol 55, 983–985.[CrossRef]
    [Google Scholar]
  29. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  30. Trček, J. & Teuber, M. ( 2002; ). Genetic and restriction analysis of the 16S–23S rDNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol Lett 208, 69–75.
    [Google Scholar]
  31. Verlander, C. P. ( 1992; ). Detection of horseradish peroxidase by colorimetry. In Nonisotopic DNA Probe Techniques, pp. 185–201. Edited by L. J. Kricka. New York: Academic Press.
  32. Yamada, Y. & Akita, M. ( 1984a; ). An electrophoretic comparison of enzymes in strains of Gluconobacter species. J Gen Appl Microbiol 30, 115–126.[CrossRef]
    [Google Scholar]
  33. Yamada, Y. & Akita, M. ( 1984b; ). Gluconobacter cerinus. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 16. Int J Syst Bacteriol 34, 503–504.[CrossRef]
    [Google Scholar]
  34. Yamada, Y., Aida, K. & Uemura, T. ( 1969; ). Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification of Gluconobacter and Acetobacter, especially of the so-called intermediate strains. J Gen Appl Microbiol 15, 186–196.
    [Google Scholar]
  35. Yamada, Y., Okada, Y. & Kondo, K. ( 1976; ). Isolation and characterization of “polarly flagellated intermediate strains” in acetic acid bacteria. J Gen Appl Microbiol 22, 237–245.[CrossRef]
    [Google Scholar]
  36. Yamada, Y., Itakura, N., Yamashita, M. & Tahara, Y. ( 1984; ). Deoxyribonucleic acid homologies in strains of Gluconobacter species. J Ferment Technol 62, 595–600.
    [Google Scholar]
  37. Yamada, Y., Hosono, R., Lisdiyanti, P., Widyastuti, Y., Saono, S., Uchimura, T. & Komagata, K. ( 1999; ). Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J Gen Appl Microbiol 45, 23–28.[CrossRef]
    [Google Scholar]
  38. Yamada, Y., Katsura, K., Kawasaki, H., Widyastuti, Y., Saono, S., Seki, T., Uchimura, T. & Komagata, K. ( 2000; ). Asaia bogorensis gen. nov., sp. nov., an unusual acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 50, 823–829.[CrossRef]
    [Google Scholar]
  39. Yukphan, P., Potacharoen, W., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2004a; ). Identification of strains assigned to the genus Gluconobacter Asai 1935 based on the sequence and the restriction analyses of the 16S–23S rDNA internal transcribed spacer regions. J Gen Appl Microbiol 50, 9–15.[CrossRef]
    [Google Scholar]
  40. Yukphan, P., Malimas, T., Takahashi, M., Potacharoen, W., Busabun, T., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2004b; ). Re-identification of Gluconobacter strains based on the restriction analysis of the 16S–23S rDNA internal transcribed spacer regions. J Gen Appl Microbiol 50, 189–195.[CrossRef]
    [Google Scholar]
  41. Yukphan, P., Takahashi, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2004c; ). Gluconobacter albidus (ex Kondo and Ameyama 1958) sp. nov., nom. rev., an acetic acid bacterium in the α-Proteobacteria. J Gen Appl Microbiol 50, 235–242.[CrossRef]
    [Google Scholar]
  42. Yukphan, P., Potacharoen, W., Tanasupawat, S., Tanticharoen, M. & Yamada, Y. ( 2004d; ). Asaia krungthepensis sp. nov., an acetic acid bacterium in the α-Proteobacteria. Int J Syst Evol Microbiol 54, 313–316.[CrossRef]
    [Google Scholar]
  43. Yukphan, P., Takahashi, M., Potacharoen, W., Tanasupawat, S., Nakagawa, Y., Tanticharoen, M. & Yamada, Y. ( 2005; ). Gluconobacter albidus (ex Kondo and Ameyama 1958) Yukphan et al. 2005. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM, List no. 103. Int J Syst Evol Microbiol 55, 983–985.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65740-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65740-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 466 - 471

DNA-DNA hybridization values for strains of sp. nov. and related species. [PDF](14 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error