1887

Abstract

Five isolates that produced large amounts of butyrate were obtained in the course of a study on the butyrate-producing microbiota from the caecal content of a 4-week-old broiler chicken. The five isolates were virtually indistinguishable in biochemical and genetic terms, suggesting that they were derived from a single bacterial clone colonizing this habitat. A phylogenetic analysis based on 16S rRNA gene sequences demonstrated that the five isolates represented a unique lineage within the subgroup of the clostridia, with as the closest phylogenetic neighbour (about 93 % similarity). These data indicate that the five novel isolates represent a single novel species within a novel genus, for which we propose the name gen. nov., sp. nov. The type strain of is 25-3 (=LMG 24109 =CCUG 55265). The DNA G+C content of strain 25-3 was 54.5 mol% .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65730-0
2008-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/12/2799.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65730-0&mimeType=html&fmt=ahah

References

  1. Apajalahti, J., Kettunen, A. & Graham, H. ( 2004; ). Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult Sci J 60, 223–232.[CrossRef]
    [Google Scholar]
  2. Barcenilla, A., Pryde, S. E., Martin, J. C., Duncan, S. H., Stewart, C. S., Henderson, C. & Flint, H. J. ( 2000; ). Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66, 1654–1661.[CrossRef]
    [Google Scholar]
  3. Coenye, T., Falsen, E., Vancanneyt, M., Hoste, B., Govan, J. R. W., Kersters, K. & Vandamme, P. ( 1999; ). Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int J Syst Bacteriol 49, 405–413.[CrossRef]
    [Google Scholar]
  4. Coenye, T., Spiker, T., Martin, A. & LiPuma, J. J. ( 2002; ). Comparative assessment of genotyping methods for epidemiologic study of Burkholderia cepacia genomovar III. J Clin Microbiol 40, 3300–3307.[CrossRef]
    [Google Scholar]
  5. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. E. ( 1994; ). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1989; ). phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  7. Kien, C. L., Blauwiekel, R., Bunn, J. Y., Jetton, T. L., Frankel, W. L. & Holst, J. J. ( 2007; ). Cecal infusion of butyrate increases intestinal cell proliferation in piglets. J Nutr 137, 916–922.
    [Google Scholar]
  8. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  9. Lan, P. T. N., Hayashi, H., Sakamoto, M. & Benno, Y. ( 2002; ). Phylogenetic analysis of cecal microbiota in chicken by the use of 16S rDNA clone libraries. Microbiol Immunol 46, 371–382.[CrossRef]
    [Google Scholar]
  10. Miyazaki, K., Martin, J. C., Marinsek-Logar, R. & Flint, H. J. ( 1997; ). Degradation and utilization of xylans by the rumen anaerobe Prevotella bryantii (formerly P. ruminicola subsp. brevis) B14. Anaerobe 3, 373–381.[CrossRef]
    [Google Scholar]
  11. Morris, G. N., Winter, J., Cato, E. P., Ritchie, A. E. & Bokkenheuser, V. D. ( 1986; ). Eubacterium desmolans sp. nov., a steroid desmolase-producing species from cat fecal flora. Int J Syst Bacteriol 36, 183–186.[CrossRef]
    [Google Scholar]
  12. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence analysis. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  13. Pryde, S. E., Duncan, S. H., Hold, G. L., Stewart, C. S. & Flint, H. J. ( 2002; ). The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217, 133–139.[CrossRef]
    [Google Scholar]
  14. Richards, S. A. ( 1970; ). The role of hypothalamic temperature in the control of panting in the chicken exposed to heat. J Physiol 211, 341–358.[CrossRef]
    [Google Scholar]
  15. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  16. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  17. Van Immerseel, F., Boyen, F., Gantois, I., Timbermont, L., Bohez, L., Pasmans, F., Haesebrouck, F. & Ducatelle, R. ( 2005; ). Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poult Sci 84, 1851–1856.[CrossRef]
    [Google Scholar]
  18. Van Nevel, C. J. & Demeyer, D. I. ( 1977; ). Effect of monensin on rumen metabolism in vitro. Appl Environ Microbiol 34, 251–257.
    [Google Scholar]
  19. Van Nevel, C. J., Demeyer, D. I., Henderickx, H. K. & Martin, J. A. ( 1970; ). A simple method for the simultaneous determination of gas production and volatile fatty acid concentration in the rumen. Z Tierphysiol Tierernahr Futtermittelkd 26, 100–104.
    [Google Scholar]
  20. Versalovic, J., Scheider, M., de Bruijn, F. J. & Lupski, J. R. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5, 25–40.
    [Google Scholar]
  21. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65730-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65730-0
Loading

Data & Media loading...

Supplements

Randomly amplified polymorphic DNA genomic patterns of isolates. Lanes: 1, 7 and 13, marker lanes; 2–6, amplification profiles of isolates 49-3, 54-3, 25-3 , 11-3 and 44-3, respectively, obtained using primer 5′-TGCGCGCGGG-3′; 8–12, amplification profiles of isolates 49-3, 54-3, 25-3 , 11-3 and 44-3, respectively, obtained using primer 5′-AGCGGGCCAA-3′.

IMAGE

Repetitive-element-primed PCR genomic patterns of the five butyric-acid-producing strains isolated from the caecal content of a broiler chicken. Primer (GTG) was used.

IMAGE

Scanning electron micrograph of cells of strain 25-3 .

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error