1887

Abstract

The taxonomic position of a lactic acid bacterium, strain L13, isolated from senmaizuke, a Japanese traditional pickle, was studied. This strain was a heterofermentative, facultatively anaerobic, Gram-positive, non-spore-forming, non-motile, rod-shaped bacterium. It produced -lactic acid from glucose. Phylogenetic analysis of its 16S rRNA gene sequence and physiological and biochemical characteristics indicated that the strain was a member of the genus . Based on 16S rRNA gene sequence similarity, strain L13 was closely related to CIP 108387 (98.9 %) and ATCC 53295 (98.5 %). In addition, the gene sequence of strain L13 was closely related to those of CIP 108387 (92.2 %) and ATCC 53295 (92.0 %). However, DNA–DNA hybridization of strain L13 with these two strains revealed that strain L13 represents a separate genomic species. The DNA GC content of strain L13 was 46 mol% and the peptidoglycan was of the A4 -Lys–-Asp type. Thus, these data indicate that strain L13 represents a novel species of the genus , for which the name is proposed. The type strain is L13 (=NBRC 103853=TISTR 1847).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65677-0
2008-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/7/1625.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65677-0&mimeType=html&fmt=ahah

References

  1. Abo-Elnaga, I. G. & Kandler, O. ( 1965; ). Zur Taxonomie der Gattung Lactobacillus Beijerinck. I. Das Subgenus Streptobacterium Orla-Jensen. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 119, 1–36 (in German).
    [Google Scholar]
  2. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1989; ). phylip – phylogeny inference package (version 3.2). Cladistics 5, 164–166.
    [Google Scholar]
  5. Kandler, O. & Weiss, N. ( 1986; ). Genus Lactobacillus Beijerinck 1901, 212AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1209–1234. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  6. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  7. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  8. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  9. Naser, S. M., Thompson, F. L., Hoste, B., Gevers, D., Dawyndt, P., Vancanneyt, M. & Swings, J. ( 2005; ). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151, 2141–2150.[CrossRef]
    [Google Scholar]
  10. Niwa, T., Kawamura, Y., Katagiri, Y. & Ezaki, T. ( 2005; ). Lytic enzyme, labiase for a broad range of Gram-positive bacteria and its application to analyze functional DNA/RNA. J Microbiol Methods 61, 251–260.[CrossRef]
    [Google Scholar]
  11. Perrière, G. & Gouy, M. ( 1996; ). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78, 364–369.[CrossRef]
    [Google Scholar]
  12. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  13. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  14. Spiller, M. A. ( 1987; ). Admixture of a Lactobacillus brevis and a Saccharomyces dairensis for preparing leavening barm. US Patent 4,666,719. 19 May 1987, US Patent Office.
  15. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  16. Ueno, Y., Hayakawa, K., Takahashi, S. & Oda, K. ( 1997; ). Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci Biotechnol Biochem 61, 1168–1171.[CrossRef]
    [Google Scholar]
  17. Ueno, Y., Hiraga, K., Mori, Y. & Oda, K. ( 2007; ). Isolation and utilization of a lactic acid bacterium, producing a high level of γ-aminobutyric acid (GABA). Seibutsu-kogaku Kaishi 85, 109–114 (in Japanese).
    [Google Scholar]
  18. Valcheva, R., Korakli, M., Onno, B., Prévost, H., Ivanova, I., Ehrmann, M. A., Dousset, X., Gänzle, M. G. & Vogel, R. F. ( 2005; ). Lactobacillus hammesii sp. nov., isolated from French sourdough. Int J Syst Evol Microbiol 55, 763–767.[CrossRef]
    [Google Scholar]
  19. Vancanneyt, M., Naser, S. M., Engelbeen, K., De Wachter, M., Van der Meulen, R., Cleenwerk, I., Hoste, B., De Vuyst, L. & Swings, J. ( 2006; ). Reclassification of Lactobacillus brevis strains LMG 11494 and LMG 11984 as Lactobacillus parabrevis sp. nov. Int J Syst Evol Microbiol 56, 1553–1557.[CrossRef]
    [Google Scholar]
  20. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  21. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65677-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65677-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1625 - 1629

Phylogenetic trees based on 16S rRNA gene sequences derived by the neighbour-joining, maximum-likelihood and maximum-parsimony methods, respectively, showing the position of L13 among selected lactobacilli. [ PDF] 108 KB



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error