1887

Abstract

This is the first study that estimates mycobacterial phylogeny using the maximum-likelihood method (PhyML-aLRT) on a seven-gene concatenate (, , 16S rRNA, , , tmRNA and ) and the super distance matrix (SDM) supertree method. Two sets of sequences were studied: a complete seven gene sequence set (set R, type strains of 87 species) and an incomplete set (set W, 132 species) with some missing data. Congruencies were computed by using the program ( package). The evolution rate of each gene was determined, as was the evolution rate of each strain for a given gene. Maximum-likelihood trees resulting from concatenation of the R and W sets resulted in a similar phylogeny, usually showing an early separation between slow-growing (SG) and rapidly growing (RG) mycobacteria. The SDM tree for the W set resulted in a different phylogeny. The separation of SG and RG was still evident, but it was located later in the nodes. The SG were therefore positioned as a subgroup of RG. Maximum-likelihood phylogenetic reconstruction was less affected by increasing the number of strains (with incomplete data), but did seem to cushion the variability of the evolution rate (ER), whereas the SDM method seemed to be more accurate and took into account both the differing ER values and the incomplete data. With regard to ER, it was observed that the 16S rRNA gene was the gene that displayed the slowest evolution, whereas was the most rapidly evolving gene. Surprisingly, these two genes alone accurately separated the SG from the RG on the basis of their ER values. This study focused on the differences in ER between genes and in some cases linked the ER to the phenotypic classification of the mycobacteria.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65658-0
2008-06-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/6/1432.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65658-0&mimeType=html&fmt=ahah

References

  1. Adekambi, T. & Drancourt, M. ( 2004; ). Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA, rpoB gene sequencing. Int J Syst Evol Microbiol 54, 2095–2105.[CrossRef]
    [Google Scholar]
  2. Afghani, B. & Stutman, H. R. ( 1996; ). Polymerase chain reaction for diagnostic of M. tuberculosis: comparison of simple boiling and a conventional method for DNA extraction. Biochem Mol Med 57, 14–18.[CrossRef]
    [Google Scholar]
  3. Anisimova, M. & Gascuel, O. ( 2006; ). Approximate likelihood-ratio test for branches: a fast, accurate and powerful alternative. Syst Biol 55, 539–552.[CrossRef]
    [Google Scholar]
  4. Bapteste, E., Susko, E., Leigh, J., MacLeod, D., Charlebois, R. L. & Doolittle, W. F. ( 2005; ). Do orthologous gene phylogenies really support tree-thinking? BMC Evol Biol 5, 33 [CrossRef]
    [Google Scholar]
  5. Blackwood, K. S., He, C., Gunton, J., Turenne, C. Y., Wolfe, J. & Kabani, A. M. ( 2000; ). Evaluation of recA sequences for identification of Mycobacterium species. J Clin Microbiol 38, 2846–2852.
    [Google Scholar]
  6. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. ( 2001; ). Universal trees based on large combined protein sequence data sets. Nat Genet 28, 281–285.[CrossRef]
    [Google Scholar]
  7. Cantarel, B. L., Morrison, H. G. & Pearson, W. ( 2006; ). Exploring the relationships between sequences similarity and accurate phylogenetic trees. Mol Biol Evol 23, 2090–2100.[CrossRef]
    [Google Scholar]
  8. Charles, L., Carbone, I., Davies, K. G., Bird, D., Burke, M., Kerry, B. R. & Opperman, C. H. ( 2005; ). Phylogenetic analysis of Pasteuria penetrans by use of multiple genetic loci. J Bacteriol 187, 5700–5708.[CrossRef]
    [Google Scholar]
  9. Chevenet, F., Brun, C., Banuls, A. L., Jacq, B. & Christen, R. ( 2006; ). TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinformatics 7, 439 [CrossRef]
    [Google Scholar]
  10. Criscuolo, A., Berry, V., Douzery, E. J. & Gascuel, O. ( 2006; ). SDM: a fast distance-based approach for (super) tree building in phylogenomics. Syst Biol 55, 740–755.[CrossRef]
    [Google Scholar]
  11. Daubin, V., Gouy, M. & Perriere, G. ( 2001; ). Bacterial molecular phylogeny using supertree approach. Genome Informatics 12, 155–164.
    [Google Scholar]
  12. Devulder, G., Pérouse de Montclos, M. & Flandrois, J. P. ( 2005; ). A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55, 293–302.[CrossRef]
    [Google Scholar]
  13. Edgar, R. C. ( 2004; ). muscle: multiple sequence alignment with accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.[CrossRef]
    [Google Scholar]
  14. Felsenstein, J. ( 2004; ). phylip (phylogeny inference package), version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  15. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.
    [Google Scholar]
  16. Gascuel, O. ( 1997; ). bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14, 685–695.[CrossRef]
    [Google Scholar]
  17. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  18. Hamady, M., Betterton, M. D. & Knight, R. ( 2006; ). Using the nucleotide substitution rate matrix to detect horizontal gene transfer. BMC Bioinformatics 7, 476 [CrossRef]
    [Google Scholar]
  19. Hasegawa, M., Kishino, H. & Yano, R. A. ( 1985; ). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22, 160–174.[CrossRef]
    [Google Scholar]
  20. Kim, B. J., Lee, S. H., Lyu, M. A., Kim, S. J., Bai, G. H., Him, S. J., Chae, G. T., Kim, E. C., Cha, C. Y. & Kook, Y. H. ( 1999; ). Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol 37, 1714–1720.
    [Google Scholar]
  21. Kim, H., Kim, S. H., Shim, T. S., Kim, M., Bai, G. H., Park, Y. G., Lee, S. H., Chae, G. T., Cha, C. Y. & other authors ( 2005; ). Differentiation of Mycobacterium species by analysis of the heat-shock protein 65 gene (hsp65). Int J Syst Evol Microbiol 55, 1649–1656.[CrossRef]
    [Google Scholar]
  22. Mignard, S. & Flandrois, J. P. ( 2007; ). Identification of Mycobacterium using the EF-tu encoding (tuf) gene and the tmRNA encoding (ssrA) gene. J Med Microbiol 56, 1033–1041.[CrossRef]
    [Google Scholar]
  23. Philippe, H., Snell, E. A., Bapteste, E., Lopez, P., Holland, P. W. H. & Casane, D. ( 2004; ). Phylogenomics of Eukaryotes: impact of missing data on large alignments. Mol Biol Evol 21, 1740–1752.[CrossRef]
    [Google Scholar]
  24. Picardeau, M., Prod'hom, G., Raskine, L., Lepennec, M. P. & Vincent, V. ( 1997; ). Genotypic characterization of five subspecies of Mycobacterium kansasii. J Clin Microbiol 35, 25–32.
    [Google Scholar]
  25. Stackebrandt, E., Frederiksen, W., Garrity, G.M., Grimont, P. A., Kämpfer, P., Maiden, M. C., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  26. Staley, J. T. ( 2006; ). The bacterial species dilemma and the genomic-phylogenetic species concept. Phil Trans R Soc B 361, 1899–1909.[CrossRef]
    [Google Scholar]
  27. Tortoli, E. ( 2003; ). Impact of genotypic studies on Mycobacteria taxonomy: the new Mycobacteria of the 1990s. Clin Microbiol Rev 16, 319–354.[CrossRef]
    [Google Scholar]
  28. Ventura, M., Canchaya, C., Del Casale, A., Dellaglio, F., Neviani, E., Fitzgerald, G. F. & Van Sinderen, D. ( 2006; ). Analysis of bifidobacterial evolution using a multilocus approach. Int J Syst Evol Microbiol 56, 2783–2792.[CrossRef]
    [Google Scholar]
  29. Zeigler, D. R. ( 2003; ). Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53, 1893–1900.[CrossRef]
    [Google Scholar]
  30. Zolg, J. W. & Philippi-Schulz, S. ( 1994; ). The superoxide dismutase gene as a target for detection and identification of mycobacteria by PCR. J Clin Microbiol 32, 2801–2812.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65658-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65658-0
Loading

Data & Media loading...

Supplements

[ Combined Tables PDF] 147 KB

PDF

Neighbour-joining phylogenetic tree and two additional figures constructed by multi-tree graphical analysis using TREEDYN. [ Combined Figures PDF] 425 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error