1887

Abstract

Strain MS 6 was obtained from a microoxic enrichment with a soda soil sample from north-eastern Mongolia in nitrogen-free alkaline medium at pH 10. The isolate had clostridia-like motile cells and formed ellipsoid endospores. It was able to fix dinitrogen gas growing on nitrogen-free alkaline medium. Strain MS 6 was a strictly fermentative bacterium without a respiratory chain, although it had a high catalase activity and tolerated aerobic conditions. It was an obligate alkaliphile with a pH range for growth between 7.5 and 10.6 (optimum at 9.0–9.5). Growth and nitrogen fixation at pH 10 were possible at a total salt content of up to 1.2 M Na (optimum at 0.2–0.3 M). The dominant cellular fatty acids included C, C 7, anteiso-C and C. The dominant isoprenoid quinone was MK-7. The cell-wall peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. 16S rRNA gene sequencing identified strain MS 6 as a member of the genus . Its closest relative was E1H. The key functional nitrogenase gene was detected in both strain MS 6 and its close relative and these strains formed a novel lineage in the gene family. On the basis of these phenotypic and genetic comparisons, strain MS 6 is proposed to represent a novel species of the genus , sp. nov. with the type strain MS 6 (=NCCB 100213=UNIQEM U377).

Keyword(s): NF, nitrogen fixation
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65655-0
2008-10-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/10/2459.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65655-0&mimeType=html&fmt=ahah

References

  1. Achouak, W., Normand, P. & Heulin, T. ( 1999; ). Comparative phylogeny of rrs and nifH genes in the Bacillaceae. Int J Syst Bacteriol 49, 961–967.[CrossRef]
    [Google Scholar]
  2. Bazilevich, N., I., ( (1965; ). Goechemistry of soda soils. Moscow: Nauka (in Russian).
  3. De Ley, J., Caffon, H. & Reinaerts, A. ( 1970; ). The quantitative measurements of hybridisation DNA from renaturation rates. Eur J Biochem 12, 133–140.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  5. Hardy, R. W. F., Holsten, R. D., Jackson, E. K. & Burns, R. C. ( 1968; ). The acetylene-ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43, 1185–1207.[CrossRef]
    [Google Scholar]
  6. Herbst, D. B. ( 1998; ). Potential salinity limitations on nitrogen fixation in sediments from Mono Lake, California. Int J Salt Lake Res 7, 261–274.
    [Google Scholar]
  7. Jones, B. E., Grant, W. D., Duckworth, A. W. & Owenson, G. G. ( 1998; ). Microbial diversity of soda lakes. Extremophiles 2, 191–200.[CrossRef]
    [Google Scholar]
  8. Kämpfer, P. ( 2002; ). Whole-cell fatty acid analysis in the systematics of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives, pp. 271–299. Edited by R. Berkeley, M. Heyndrickx, N. Logan & P. De Vos. Oxford: Blackwell Science.
  9. Kondorskaya, N. I. ( 1965; ). Geograficheskoe rasprostranenie pochv sodovogo zasoleniya v SSSR. Soil Sci (Moscow) 9, 10–16 (in Russian).
    [Google Scholar]
  10. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–177. Edited by E. Stackebrandt & M. Goodfellow. Chichester, UK: John Wiley & Sons.
  11. Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. ( 1951; ). Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265–275.
    [Google Scholar]
  12. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  13. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from microorganisms. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  14. Marusina, A. I., Boulygina, E. S., Kuznetsov, B. B., Tourova, T. P., Kravchenko, I. K. & Galchenko, V. F. ( 2001; ). System of oligonucleotide primers for amplification of nifH genes in diverse groups of Prokaryotes. Microbiology English translation of Mikrobiologiia 70, 86–91.
    [Google Scholar]
  15. Mineev, V. G. & other authors ( 1989; ). Manual on agrochemistry. Moscow State University Press, Moscow, pp. 4–11 (in Russian).
  16. Nielsen, P., Rainey, F. A., Outtrup, H., Priest, F. G. & Fritze, D. ( 1994; ). Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 117, 16–65.[CrossRef]
    [Google Scholar]
  17. Nielsen, P., Fritze, D. & Priest, F. G. ( 1995; ). Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141, 1745–1761.[CrossRef]
    [Google Scholar]
  18. Oremland, R. S. ( 1990; ). Nitrogen fixation dynamics of two diazotrophic communities in Mono Lake, California. Appl Environ Microbiol 56, 614–622.
    [Google Scholar]
  19. Oren, A. ( 2002; ). Halophilic microorganisms and their environments. Dordrecht: Kluwer Academic.
  20. Pfennig, N. & Lippert, K. D. ( 1966; ). Über das Vitamin B12-Bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55, 245–256 (in German).
    [Google Scholar]
  21. Santini, J. M., Streimann, I. C. A. & van den Hoven, R. N. ( 2004; ). Bacillus macyae sp. nov., an arsenate-respiring bacterium isolated from an Australian gold mine. Int J Syst Evol Microbiol 54, 2241–2244.[CrossRef]
    [Google Scholar]
  22. Sorokin, D. Yu. ( 2005; ). Is there a limit for high-pH growth? Int J Syst Evol Microbiol 55, 1405–1406.[CrossRef]
    [Google Scholar]
  23. Sorokin, D. Yu. & Kuenen, J. G. ( 2005; ). Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29, 685–702.[CrossRef]
    [Google Scholar]
  24. Steward, G. F., Zehr, J. P., Jellison, R., Montoya, J. P. & Hollibaugh, J. T. ( 2004; ). Vertical distribution of nitrogen-fixing phylotypes in a meromictic, hypersaline lake. Microb Ecol 47, 30–40.[CrossRef]
    [Google Scholar]
  25. Streshinskaia, G. M., Naumova, I. B. & Panina, L. I. ( 1979; ). Chemical composition of the cell wall of Streptomyces chrysomallus which produces the antibiotic aurantin. Microbiology English translation of Mikrobiologiia 48, 814–819.
    [Google Scholar]
  26. Sumner, J. B. & Dounce, A. L. ( 1955; ). Liver catalase. Methods Enzymol 2, 775–781.
    [Google Scholar]
  27. Switzer Blum, J., Burns Bindi, A., Buzzelli, J., Stolz, J. F. & Oremland, R. S. ( 1998; ). Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171, 19–30.[CrossRef]
    [Google Scholar]
  28. Tindall, B. J. ( 1996; ). Respiratory lipoquinones as biomarkers. In Molecular Microbial Ecology Manual, Section 4.1.5, Supplement 1. Edited by A. Akkermans, F. de Bruijn & D. van Elsas. Dordrecht, Netherlands: Kluwer Publishers.
  29. Tourova, T. P., Spiridonova, E. M., Berg, I. A., Slobodova, N. V., Boulygina, E. S. & Sorokin, D. Yu. ( 2007; ). Phylogeny and evolution of the family Ectothiorhodospiraceae based on comparison of 16S rRNA, cbbL and nifH genes. Int J Syst Evol Microbiol 57, 2387–2398.[CrossRef]
    [Google Scholar]
  30. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  31. Yumoto, I. ( 2002; ). Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93, 342–353.[CrossRef]
    [Google Scholar]
  32. Zavarzin, G. A., Zhilina, T. N. & Kevbrin, V. V. ( 1999; ). The alkaliphilic microbial community and its functional diversity. Microbiology English translation of Mikrobiologiia 68, 503–521.
    [Google Scholar]
  33. Zavarzina, D. G., Kolganova, T. V., Bulygina, E. S., Kostrikina, N. A., Tourova, T. P. & Zavarzin, G. A. ( 2006; ). Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae isolated from a soda lake. Microbiology English translation of Mikrobiologiia 75, 775–785.
    [Google Scholar]
  34. Zhilina, T. N., Zavarzin, G. A., Rainey, F. A., Pikuta, E. N., Osipov, G. A. & Kostrikina, N. A. ( 1997; ). Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47, 144–149.[CrossRef]
    [Google Scholar]
  35. Zhilina, T. N., Kevbrin, V. V., Tourova, T. P., Lysenko, A. M., Kostrikina, N. A. & Zavarzin, G. A. ( 2005; ). Clostridium alkalicellum sp. nov., an obligately alkaliphilic cellulolytic bacterium from a soda lake in the Baikal Region. Microbiology English translation of Mikrobiologiia 74, 642–653.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65655-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65655-0
Loading

Data & Media loading...

Cell morphology of strain MS 6 grown anaerobically at 0.6 M Na and pH 10 with glucose. [ PDF] 115 KB

PDF

Combined file [ PDF] 402 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error