1887

Abstract

A previously unknown ecotype of obligately chemolithoautotrophic, sulfur-oxidizing bacteria was discovered in sediments of various inland hypersaline lakes and a solar saltern. The salt requirements for these bacteria were similar to those of haloarchaea, representing the first example of extreme halophiles occurring among the chemolithoautotrophs. They were enriched and isolated at 4 M NaCl under aerobic conditions with thiosulfate or tetrathionate as the electron donor or under micro-oxic conditions with sulfide. In total, 20 strains were obtained from hypersaline inland lakes in central Asia, central Russia and Crimea and a sea saltern of the Adriatic Sea. The isolates were thin, motile spirilla, some of which possessed a yellow, membrane-bound pigment. They were obligately aerobic, chemolithoautotrophic, sulfur-oxidizing bacteria that used thiosulfate, sulfide, sulfur and tetrathionate as electron donors. The characteristic feature of the group was the production of large amounts of tetrathionate as an intermediate during the oxidation of thiosulfate to sulfate. All but one of the strains grew within the pH range 6.5–8.2 (optimally at pH 7.3–7.8) and at NaCl concentrations from 2.0 to 5 M (optimally at 3.0 M). A single strain, designated ALgr 6sp, obtained (by enrichment) from the hypersaline alkaline lakes of the Wadi Natrun valley, was found to be moderately halophilic and facultatively alkaliphilic (capable of growth at pH 10). The predominant cellular fatty acids were quite unusual, with 10-methyl C and C predominating. Cells grown at 4 M NaCl accumulated extremely high concentrations of glycine betaine as a compatible solute. The 20 neutrophilic isolates contained three genospecies (on the basis of DNA–DNA relatedness data) but could not be discriminated phenotypically. On the basis of the phenotypic and genotypic analyses, the isolates constitute a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain of is HL 3 (=DSM 15071=UNIQEM U219). The haloalkaliphilic strain ALgr 6sp represents a second species of the new genus, for which the name sp. nov. is proposed. The type strain of is ALgr 6sp (=DSM 17116=UNIQEM U372).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65654-0
2008-07-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/7/1685.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65654-0&mimeType=html&fmt=ahah

References

  1. Banciu, H., Sorokin, D. Yu., Galinski, E. A., Muyzer, G., Kleerebezem, R. & Kuenen, J. G. ( 2004; ). Thioalkalivibrio halophilus sp. nov., a novel obligately chemolithoautotrophic facultatively alkaliphilic and extremely salt-tolerant sulfur-oxidizing bacterium from a hypersaline alkaline lake. Extremophiles 8, 325–334.
    [Google Scholar]
  2. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  3. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.53c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  4. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  5. Kelly, D. P. & Wood, A. P. ( 1994; ). Enzymes involved in microbiological oxidation of thiosulfate and polythionates. Methods Enzymol 243, 501–520.
    [Google Scholar]
  6. Kharroub, K., Aguilera, M., Quesada, T., Morillo, J. A., Ramos-Cormenzana, A., Boulharouf, A. & Monteoliva-Sánchez, M. ( 2006; ). Salicola salis sp. nov., an extremely halophilic bacterium isolated from Ezzemoul sabkha in Algeria. Int J Syst Evol Microbiol 56, 2647–2652.[CrossRef]
    [Google Scholar]
  7. Kjeldsen, K. U., Loy, A., Jakobsen, T. F., Thomsen, T. R., Wagner, M. & Ingvorsen, K. ( 2007; ). Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60, 287–298.[CrossRef]
    [Google Scholar]
  8. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  9. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from microorganisms. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  10. Maturrano, L., Valens-Vadell, M., Rosselló-Mora, R. & Antón, J. ( 2006; ). Salicola marasensis gen. nov., sp. nov., an extremely halophilic bacterium isolated from the Maras solar salterns in Peru. Int J Syst Evol Microbiol 56, 1685–1691.[CrossRef]
    [Google Scholar]
  11. Nelson, D. C. & Jannasch, H. W. ( 1983; ). Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures. Arch Microbiol 136, 262–269.[CrossRef]
    [Google Scholar]
  12. Oren, A. ( 1999; ). Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63, 334–348.
    [Google Scholar]
  13. Oren, A. ( 2002; ). Halophilic Microorganisms and Their Environments. Dordrecht: Kluwer AP.
  14. Pfennig, N. & Lippert, K. D. ( 1966; ). Über das Vitamin B12 – Bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55, 245–256.
    [Google Scholar]
  15. Pronk, J. T., Meulenberg, R., Hazeu, W., Bos, P. & Kuenen, J. G. ( 1990; ). Oxidation of reduced inorganic sulfur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75, 293–306.[CrossRef]
    [Google Scholar]
  16. Schäfer, H. & Muyzer, G. ( 2001; ). Denaturing gradient gel electrophoresis in marine microbial ecology. Methods Microbiol 30, 426–468.
    [Google Scholar]
  17. Sorokin, D. Yu., Kuenen, J. G. & Jetten, M. ( 2001; ). Denitrification at extremely alkaline conditions in obligately autotrophic alkaliphilic sulfur-oxidizing bacterium Thioalkalivibrio denitrificans. Arch Microbiol 175, 94–101.[CrossRef]
    [Google Scholar]
  18. Sorokin, D. Yu., Tourova, T. P., Galinski, E. A., Belloch, C. & Tindall, B. J. ( 2006a; ). Extremely halophilic denitrifying bacteria from hypersaline inland lakes, Halovibrio denitrificans sp. nov. and Halospina denitrificans gen. nov., sp. nov., and evidence that the genus name Halovibrio Fendrich 1989 with the type species Halovibrio variabilis should be associated with DSM 3050. Int J Syst Evol Microbiol 56, 379–388.[CrossRef]
    [Google Scholar]
  19. Sorokin, D. Yu., Tourova, T. P., Lysenko, A. M. & Muyzer, G. ( 2006b; ). Culturable diversity of halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology 152, 3013–3023.[CrossRef]
    [Google Scholar]
  20. Sorokin, D. Yu., Tourova, T. P., Kolganova, T. V., Spiridonova, E. M., Berg, I. A. & Muyzer, G. ( 2006c; ). Thiomicrospira halophila sp. nov., a novel, moderately halophilic, obligately chemolithoautotrophic sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56, 2375–2380.[CrossRef]
    [Google Scholar]
  21. Sorokin, D. Y., Tourova, T. P., Bezsoudnova, E. Y., Pol, A. & Muyzer, G. ( 2007a; ). Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov. – a moderately halophilic chemolithoautotrophic sulfur-oxidizing Gammaproteobacterium from hypersaline lakes. Arch Microbiol 187, 441–450.[CrossRef]
    [Google Scholar]
  22. Sorokin, D. Yu., Tourova, T. P., Bracker, G. & Muyzer, G. ( 2007b; ). Thiohalomonas denitrificans gen. nov., sp. nov, and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying Gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57, 1582–1589.[CrossRef]
    [Google Scholar]
  23. Taher, A. G. ( 1999; ). Inland saline lakes of Wadi El Natrun depression, Egypt. Int J Salt Lake Res 8, 149–170.
    [Google Scholar]
  24. Takaichi, S., Maoka, T., Akimoto, N., Sorokin, D. Yu., Banciu, H. & Kuenen, J. G. ( 2004; ). Two novel yellow pigments natronochrome and chloronatronochrome from the natrono(alkali)philic sulfur-oxidizing bacterium Thialkalivibrio versutus ALJ 15. Tetrahedron Lett 45, 8303–8305.[CrossRef]
    [Google Scholar]
  25. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  26. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  27. Ventosa, A., Nieto, J. J. & Oren, A. ( 1998; ). Biology of aerobic moderately halophilic bacteria. Microbiol Mol Biol Rev 62, 504–544.
    [Google Scholar]
  28. Wood, A. P. & Kelly, D. P. ( 1991; ). Isolation and characterisation of Thiobacillus halophilus sp. nov., a sulphur-oxidizing autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156, 277–280.[CrossRef]
    [Google Scholar]
  29. Zhilina, T. N., Zavarzin, G. A., Rainey, F. A., Pikuta, E. N., Osipov, G. A. & Kostrikina, N. A. ( 1997; ). Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47, 144–149.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65654-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65654-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error