A hydrogenotrophic, sulfate-reducing bacterium, designated strain SB1, was isolated from sulfidogenic sludge of a full-scale synthesis-gas-fed bioreactor used to remediate wastewater from a zinc smelter. Strain SB1 was found to be an abundant micro-organism in the sludge at the time of isolation. Hydrogen, formate, pyruvate, lactate, malate, fumarate, succinate, ethanol and glycerol served as electron donors for sulfate reduction. Organic substrates were incompletely oxidized to acetate. 16S rRNA gene sequence analysis showed that the closest recognized relative to strain SB1 was DSM 1382 (97.5 % similarity). The G+C content of the genomic DNA of strain SB1 was 62.2 mol%, comparable with that of DSM 1382 (60.2 mol%). However, the level of DNA–DNA relatedness between strain SB1 and DSM 1382 was only 56.0 %, indicating that the two strains are not related at the species level. Strain SB1 could also be differentiated from based on phenotypic characteristics, such as major cellular fatty acid composition (anteiso-C, iso-C and C 9) and substrate utilization. Strain SB1 is therefore considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SB1 (=DSM 16681=JCM 14635).


Article metrics loading...

Loading full text...

Full text loading...



  1. Boonstra, J., van Lier, J., Janssen, G., Dijkman, H. & Buisman, C. J. N.(1999). Biological treatment of acid mine drainage. In Biohydrometallurgy and Environment Toward the 21st Century. Process Metallurgy 9B, pp. 559–567. Edited by R. Amils & A. Ballister. Amsterdam: Elsevier.
  2. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  3. Dar, S. A., Stams, A. J. M., Kuenen, J. G. & Muyzer, G.(2007). Co-existence of physiologically similar sulfate-reducing bacteria in a full-scale sulfidogenic bioreactor fed with a single organic electron donor. Appl Microbiol Biotechnol 75, 1463–1472.[CrossRef] [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  5. Edlund, A., Nichols, P. D., Roffey, R. & White, D. C.(1985). Extractable and lipopolysaccharide fatty acid and hydroxy acid profiles from Desulfovibrio species. J Lipid Res 26, 982–988. [Google Scholar]
  6. Escara, J. F. & Hutton, J. R.(1980). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef] [Google Scholar]
  7. Esnault, G., Caumette, P. & Garcia, J.-L.(1988). Characterization of Desulfovibrio giganteus sp. nov., a sulfate reducing bacterium isolated from a brackish coastal lagoon. Syst Appl Microbiol 10, 147–151.[CrossRef] [Google Scholar]
  8. Hungate, R. E.(1969). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132. [Google Scholar]
  9. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  10. Johnson, D. B.(2000). Biological removal of sulfurous compounds from inorganic wastewaters. In Environmental Technologies, pp. 175–206. Edited by P. Lens & L. Hulshoff Pol. London: International Association on Water Quality.
  11. Kaksonen, A. H., Spring, S., Schumann, P., Kroppenstedt, R. M. & Puhakka, J. A.(2006).Desulfotomaculum thermosubterraneum sp. nov., a thermophilic sulfate-reducer isolated from an underground mine located in a geothermally active area. Int J Syst Evol Microbiol 56, 2603–2608.[CrossRef] [Google Scholar]
  12. Kremer, D. R., Nienhuis-Kuiper, H. E., Timmer, C. J. & Hansen, T. A.(1989). Catabolism of malate and related dicarboxylic acids in various Desulfovibrio strains and the involvement of an oxygen-labile NADPH dehydrogenase. Arch Microbiol 151, 34–39. [Google Scholar]
  13. Lens, P. N. L., Visser, A., Janssen, A. J. H., Hulshoff Pol, L. & Lettinga, G.(1998). Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28, 41–88.[CrossRef] [Google Scholar]
  14. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  15. McGinnis, S. & Madden, T. L.(2004).blast: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32, W20–W25.[CrossRef] [Google Scholar]
  16. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  17. Oude Elferink, S. J. W. H., Maas, R. N., Harmsen, H. J. M. & Stams, A. J. M.(1995).Desulforhabdus amnigenus gen. nov. sp. nov. a sulfate reducer isolated from anaerobic granular sludge. Arch Microbiol 164, 119–124.[CrossRef] [Google Scholar]
  18. Oude Elferink, S. J. W. H., Rinia, H. A., Bruins, M. E., de Vos, W. M. & Stams, A. J. M.(1997). Detection and quantification of Desulforhabdus amnigenus in anaerobic granular sludge by dot blot hybridization and PCR amplification. J Appl Microbiol 83, 102–110.[CrossRef] [Google Scholar]
  19. Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J. & Glockner, F. O.(2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35, 7188–7196.[CrossRef] [Google Scholar]
  20. Roest, K., Heilig, H. G. H. J., Smidt, H., de Vos, W. M., Stams, A. J. M. & Akkermans, A. D. L.(2005). Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl Microbiol 28, 175–185.[CrossRef] [Google Scholar]
  21. Rosselló-Mora, R. & Amann, R.(2001). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef] [Google Scholar]
  22. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  23. Stams, A. J. M., Van Dijk, J. B., Dijkema, C. & Plugge, C. M.(1993). Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59, 1114–1119. [Google Scholar]
  24. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  25. van Houten, B. H. G. W.(2006).Microbial aspects of synthesis gas fed bioreactors treating sulfate and metal rich wastewaters. PhD thesis, Wageningen University.
  26. van Houten, B. H. G. W., Roest, K., Tzeneva, V. A., Dijkman, H., Smidt, H. & Stams, A. J. M.(2006). Occurrence of methanogenesis during start-up of a full-scale synthesis gas-fed reactor treating sulfate and metal-rich wastewater. Water Res 40, 553–560.[CrossRef] [Google Scholar]
  27. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 2, pp. 229 - 233

rep-PCR pattern comparison of strain SB1 ( sp. nov.) and strains L3 and L7. [PDF](338 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error