1887

Abstract

A Gram-negative, rod-shaped, yellow pigmented bacterium, strain NJ-26, was isolated from sediment of the eutrophicated Guanting Reservoir in Beijing, China. A phylogenetic analysis based on 16S rRNA gene sequences placed strain NJ-26 within the genus in the family . The highest sequence similarity was found with R2A45-3 (97.7 %). The major fatty acids (>5 %) of the isolate were iso-C, iso-C 9, C, iso-C 3-OH, iso-C G and iso-C 3-OH. The G+C content of the genomic DNA was 40.6 mol%. The DNA–DNA relatedness value with R2A45-3 was 5.4 %. Molecular and phenotypic data suggest that strain NJ-26 represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is NJ-26 (=CGMCC 1.6844 =NBRC 103934).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65586-0
2008-09-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/9/2186.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65586-0&mimeType=html&fmt=ahah

References

  1. Bergey, D. H., Harrison, F. C., Breed, R. S., Hammer, B. W. & Huntoon, F. M. (editors) ( 1923; ). Bergey's Manual of Determinative Bacteriology. Baltimore: Williams & Wilkins.
  2. Bernardet, J.-F. & Bowman, J. ( 2006; ). The genus Flavobacterium. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 7, pp. 481–531. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  3. Bernardet, J.-F. & Grimont, P. A. D. ( 1989; ). Deoxyribonucleic acid relatedness and phenotypic characterization of Flexibacter columnaris sp. nov., nom. rev., Flexibacter psychrophilus sp. nov., nom. rev. and Flexibacter maritimus. Int J Syst Bacteriol 39, 346–354.[CrossRef]
    [Google Scholar]
  4. Bernardet, J.-F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K. & Vandamme, P. ( 1996; ). Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46, 128–148.[CrossRef]
    [Google Scholar]
  5. Bernardet, J.-F., Nakagawa, Y. & Holmes, B. ( 2002; ). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef]
    [Google Scholar]
  6. Chun, J., Lee, J.-H., Jung, Y., Kim, M., Kim, S., Kim, B. K. & Lim, Y. W. ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57, 2259–2261.[CrossRef]
    [Google Scholar]
  7. Cousin, S., Päuker, O. & Stackebrandt, E. ( 2007; ). Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int J Syst Evol Microbiol 57, 243–249.[CrossRef]
    [Google Scholar]
  8. De Ley, J. ( 1970; ). Reexamination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101, 737–754.
    [Google Scholar]
  9. Dong, X.-Z. & Cai, M.-Y. ( 2001; ). Determinative Manual for Routine Bacteriology. Beijing: Scientific Press.
  10. Johnson, J. L. ( 1985a; ). Determination of DNA base composition. Methods Microbiol 18, 1–31.
    [Google Scholar]
  11. Johnson, J. L. ( 1985b; ). DNA reassociation and RNA hybridisation of bacterial nucleic acids. Methods Microbiol 18, 33–74.
    [Google Scholar]
  12. Kim, B.-Y., Weon, H.-Y., Cousin, S., Yoo, S.-H., Kwon, S.-W., Go, S.-J. & Stackebrandt, E. ( 2006; ). Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56, 1645–1649.[CrossRef]
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  15. Park, M., Lu, S., Ryu, S. H., Chung, B. S., Park, W., Kim, C. J. & Jeon, C. O. ( 2006; ). Flavobacterium croceum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 56, 2443–2447.[CrossRef]
    [Google Scholar]
  16. Park, M., Ryu, S. H., Vu, T.-H. T., Ro, H.-S., Yun, P.-Y. & Jeon, C. O. ( 2007; ). Flavobacterium defluvii sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 57, 233–237.[CrossRef]
    [Google Scholar]
  17. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  18. Weon, H.-Y., Song, M.-H., Son, J.-A., Kim, B.-Y., Kwon, S. W., Go, S.-J. & Stackebrandt, E. ( 2007; ). Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 57, 1594–1598.[CrossRef]
    [Google Scholar]
  19. Ying, J.-Y., Liu, Z.-P., Wang, B.-J., Dai, X., Yang, S.-S. & Liu, S.-J. ( 2007; ). Salegentibacter catena sp. nov., isolated from sediment of the South China Sea, and emended description of the genus Salegentibacter. Int J Syst Evol Microbiol 57, 219–222.[CrossRef]
    [Google Scholar]
  20. Yoon, J.-H., Kang, S.-J., Lee, J.-S. & Oh, T.-K. ( 2007; ). Flavobacterium terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 57, 947–950.[CrossRef]
    [Google Scholar]
  21. Zhu, F., Wang, S. & Zhou, P.-J. ( 2003; ). Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 53, 853–857.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65586-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65586-0
Loading

Data & Media loading...

Supplements

vol. , part 9, pp. 2186 - 2190

Maximum-parsimony and minimum-evolution phylogenetic trees based on 16S rRNA gene sequences. [PDF](24 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error