1887

Abstract

A high-throughput screening effort, designed to isolate bacteriocin-producing lactic acid bacteria (LAB) from malted cereals, resulted in the isolation of four bacteriocin-producing strains that could not be assigned conclusively to recognized species. The four isolates (UCC128, UCC125, UCC126 and UCC127) were found to share identical (100 %) 16S rRNA gene sequences and were therefore deemed to belong to the same species. The strains were Gram-positive, catalase-negative, non-motile homofermentative LAB. The closest recognized relative to strain UCC128 identified based on comparative 16S rRNA gene sequence analysis was DSM 20444 (97 % similarity). The strains were characterized phenotypically to identify specific growth requirements. DNA–DNA hybridization between strain UCC128 and DSM 20444 revealed a level of relatedness of only 39.4 %. This indicates that strain UCC128 does not belong to the species . The four bacteriocin-producing strains are therefore considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is UCC128 (=DSM 19519=LMG 24241).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65584-0
2008-09-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/9/2013.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65584-0&mimeType=html&fmt=ahah

References

  1. Carr, J. G. & Davies, P. A. ( 1970; ). Homofermentative lactobacilli of ciders including Lactobacillus mali sp. nov. J Appl Bacteriol 33, 768–774.[CrossRef]
    [Google Scholar]
  2. Cashion, P., Hodler-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  3. Corsetti, A., Settani, L., van Sinderen, D., Felis, G. E., Dellaglio, F. & Gobetti, M. ( 2005; ). Lactobacillus rossii sp. nov., isolated from wheat sourdough. Int J Syst Evol Microbiol 55, 35–40.[CrossRef]
    [Google Scholar]
  4. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  5. Edwards, C. G., Collins, M. D., Lawson, P. A. & Rodriguez, A. V. ( 2000; ). Lactobacillus nagelii sp. nov., an organism isolated from a partially fermented wine. Int J Syst Evol Microbiol 50, 699–702.[CrossRef]
    [Google Scholar]
  6. Endo, A. & Okada, S. ( 2005; ). Lactobacillus satsumensis sp. nov., isolated from mashes of shochu, a typical Japanese distilled spirit made from fermented rice and other starchy materials. Int J Syst Evol Microbiol 55, 83–85.[CrossRef]
    [Google Scholar]
  7. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  8. Hartnett, D. J., Vaughan, A. & van Sinderen, D. ( 2002; ). Antimicrobial-producing lactic acid bacteria isolated from raw barley and sorghum. J Inst Brew 108, 169–177.[CrossRef]
    [Google Scholar]
  9. Hucker, G. J. ( 1921; ). A new modification and application of the Gram stain. J Bacteriol 6, 395–397.
    [Google Scholar]
  10. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  11. Kandler, O. & Weiss, N. ( 1986; ). Genus Lactobacillus Beijerinck 1901. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1209–1234. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams and Wilkins.
  12. Kato, Y., Sakala, R. M., Hayashidani, H., Kiuchi, A., Kaneuchi, C. & Ogawa, M. ( 2000; ). Lactobacillus algidus sp. nov., a psychrophilic lactic acid bacterium isolated from vacuum-packaged refrigerated beef. Int J Syst Evol Microbiol 50, 1143–1149.[CrossRef]
    [Google Scholar]
  13. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  14. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  15. Morotomi, M., Yuki, N., Kado, Y., Kushiro, A., Shimazaki, T., Watanabe, K. & Yuyama, T. ( 2002; ). Lactobacillus equi sp. nov., a predominant intestinal Lactobacillus species of the horse isolated from faeces of healthy horses. Int J Syst Evol Microbiol 52, 211–214.
    [Google Scholar]
  16. O'Mahony, A., O'Sullivan, T., Walsh, Y., Vaughan, A., Maher, M., Fitzgerald, G. F. & van Sinderen, D. ( 2000; ). Characterisation of antimicrobial producing lactic acid bacteria from malted barley. J Inst Brew 106, 403–410.[CrossRef]
    [Google Scholar]
  17. O'Sullivan, T. F., Walsh, Y., O'Mahony, A., Fitzgerald, G. F. & van Sinderen, D. ( 1999; ). A comparative study of malthouse and brewing microflora. J Inst Brew 105, 55–61.[CrossRef]
    [Google Scholar]
  18. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S. ( 1955; ). The behavior of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef]
    [Google Scholar]
  19. Rodas, A. M., Ferrer, S. & Pardo, I. ( 2005; ). Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol 55, 197–207.[CrossRef]
    [Google Scholar]
  20. Rodas, A. M., Chenoll, E., Macián, M. C., Ferrer, S., Pardo, I. & Aznar, R. ( 2006; ). Lactobacillus vini sp. nov., a wine lactic acid bacterium homofermentative for pentoses. Int J Syst Evol Microbiol 56, 513–517.[CrossRef]
    [Google Scholar]
  21. Rouse, S., Sun, F., Vaughan, A. & van Sinderen, D. ( 2007; ). High-throughput isolation of bacteriocin-producing lactic acid bacteria, with potential application in the brewing industry. J Inst Brew 113, 256–262.[CrossRef]
    [Google Scholar]
  22. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
  23. Stackebrandt, E. & Ebers, J. ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33, 152–155.
    [Google Scholar]
  24. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  25. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  26. Tamura, K., Dudley, J., Nei, M. & Kumar, S. ( 2007; ). mega4: molecular evolutionary genetic analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef]
    [Google Scholar]
  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  28. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65584-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65584-0
Loading

Data & Media loading...

vol. , part 9, pp. 2013 - 2017

Phylogenetic relationship of sp. nov. to related species of the genus based on 16S rRNA gene sequences, constructed using the maximum-parsimony method.

. Phylogenetic relationship of sp. nov. to related species of the genus based on 16S rRNA gene sequences, constructed using the maximum likelihood method.

Combined File [ PDF] 450 KB

 

 



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error