In this study, strain P 461/12, isolated from decaying plant material after mulching a pasture, was shown to represent a novel species of the genus by means of a polyphasic approach. The closest phylogenetic neighbours to the novel strain, as determined by 16S rRNA gene sequence analysis, were K105 and PSD1-4 with gene sequence similarities of 97.4 % and 97.2 %, respectively. Strain P 461/12 could be differentiated by means of its RiboPrint pattern from the type strains of all recognized species belonging to the same cluster as determined by 16S rRNA gene sequence comparisons. The nearest phylogenetic neighbours, and in particular the closest relatives and could be distinguished from the novel isolate by means of several physiological features and also by the remarkably lower proportion of anteiso-C in the whole-cell fatty acid profile. Based on these findings, the new isolate represents a novel species, for which the name sp. nov. is proposed. The type strain is P 461/12 (=DSM 19109=LMG 24052).


Article metrics loading...

Loading full text...

Full text loading...



  1. Allerberger, F. & Fritschel, S. J.(1999). Use of automated ribotyping of Austrian Listeria monocytogenes isolates to support epidemiological typing. J Microbiol Methods 35, 237–244.[CrossRef] [Google Scholar]
  2. Bacon, C. W. & Hinton, D. M.(2006). Bacterial endophytes: the endophytic niche, its occupants, and its utility. In Plant-Associated Bacteria, pp. 155–194. Edited by S. S. Gnanamanickam. Dordrecht, The Netherlands: Springer.
  3. Beattie, G. A.(2006). Plant-associated bacteria: survey, molecular phylogeny, genomics and recent advances. In Plant-Associated Bacteria, pp. 1–56. Edited by S. S. Gnanamanickam. Dordrecht, The Netherlands: Springer.
  4. Behrendt, U.(2001).Der Einfluß differenzierter Bewirtschaftungsintensität von Niedermoorgrünland auf die Entwicklung von Mikroorganismen-Gesellschaften in der Phyllosphäre von Gräsern. Nr. 45, Müncheberg: Zentrum für Agrarlandschafts- und Landnutzungsforschung (ZALF) e.V.
  5. Behrendt, U., Ulrich, A., Schumann, P., Erler, W., Burghardt, J. & Seyfarth, W.(1999). A taxonomic study of bacteria isolated from grasses: a proposed new species Pseudomonas graminis sp. nov. Int J Syst Bacteriol 49, 297–308.[CrossRef] [Google Scholar]
  6. Behrendt, U., Ulrich, A. & Schumann, P.(2003). Fluorescent pseudomonads associated with the phyllosphere of grasses; Pseudomonas trivialis sp. nov., Pseudomonas poae sp. nov. and Pseudomonas congelans sp. nov. Int J Syst Evol Microbiol 53, 1461–1469.[CrossRef] [Google Scholar]
  7. Behrendt, U., Ulrich, A., Schumann, P., Meyer, J.-M. & Spröer, C.(2007a).Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57, 979–985.[CrossRef] [Google Scholar]
  8. Behrendt, U., Ulrich, A., Schumann, P. & Spröer, C.(2007b).Chryseobacterium luteum sp. nov., a bacterium associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57, 1881–1885.[CrossRef] [Google Scholar]
  9. Bernardet, J.-F., Hugo, C. J. & Bruun, B.(2006). The Genera Chryseobacterium and Elizabethkingia. In The Prokaryotes, a Handbook on the Biology of Bacteria, 3rd edn, vol. 7, pp. 638–676. Edited by M. Dworkin. New York: Springer.
  10. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  11. de Beer, H., Hugo, C. J., Jooste, P. J., Willems, A., Vancanneyt, M., Coenye, T. & Vandamme, P. A. R.(2005).Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55, 2149–2153.[CrossRef] [Google Scholar]
  12. de Beer, H., Hugo, C. J., Jooste, P. J., Vancanneyt, M., Coenye, T. & Vandamme, P.(2006).Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int J Syst Evol Microbiol 56, 1317–1322.[CrossRef] [Google Scholar]
  13. Felsenstein, J.(1981). Evolutionary tree from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  14. Felsenstein, J.(1993).phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  15. Gallego, V., Garcia, M. T. & Ventosa, A.(2006).Chryseobacterium hispanicum sp. nov., isolated from the drinking water distribution system of Sevilla, Spain. Int J Syst Evol Microbiol 56, 1589–1592.[CrossRef] [Google Scholar]
  16. Green, S. J., Inbar, E., Michel, F. C., Jr, Hadar, Y. & Minz, D.(2006). Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72, 3975–3983.[CrossRef] [Google Scholar]
  17. Hugo, C. J., Segers, P., Hoste, B., Vancanneyt, M. & Kersters, K.(2003).Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53, 771–777.[CrossRef] [Google Scholar]
  18. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J.(2003).Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef] [Google Scholar]
  19. Kim, K. K., Bae, H.-S., Schumann, P. & Lee, S.-T.(2005).Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55, 133–138.[CrossRef] [Google Scholar]
  20. Krechel, A., Faupel, A., Hallmann, J., Ulrich, A. & Berg, G.(2002). Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood. Can J Microbiol 48, 772–786.[CrossRef] [Google Scholar]
  21. Mahaffee, W. F. & Kloepper, J. W.(1997). Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microb Ecol 34, 210–223.[CrossRef] [Google Scholar]
  22. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  23. Mudarris, M., Austin, B., Segers, P., Vancanneyt, M., Hoste, B. & Bernardet, J. F.(1994).Flavobacterium scophthalmum sp. nov., a pathogen of turbot (Scophthalmus maximus L.). Int J Syst Bacteriol 44, 447–453.[CrossRef] [Google Scholar]
  24. Park, M. S., Jung, S. R., Lee, K. H., Lee, M.-S., Do, J. O., Kim, S. B. & Bae, K. S.(2006).Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56, 433–438.[CrossRef] [Google Scholar]
  25. Quan, Z.-X., Kim, K. K., Kim, M.-K., Jin, L. & Lee, S.-T.(2007).Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57, 141–145.[CrossRef] [Google Scholar]
  26. Richard, C. & Kiredjian, M.(1995).Laboratory Methods for the Identification of Strictly Aerobic Gram-Negative Bacilli. Paris, France: Institut Pasteur.
  27. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  28. Shen, F.-T., Kämpfer, P., Young, C.-C., Lai, W.-A. & Arun, A. B.(2005).Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55, 1301–1304.[CrossRef] [Google Scholar]
  29. Shimomura, K., Kaji, S. & Hiraishi, A.(2005).Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55, 1903–1906.[CrossRef] [Google Scholar]
  30. Sikorski, J., Stackebrandt, E. & Wackernagel, W.(2001).Pseudomonas kilonensis sp. nov., a bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 51, 1549–1555. [Google Scholar]
  31. Stackebrandt, E. & Ebers, J.(2006). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33, 152–155. [Google Scholar]
  32. Tai, C.-J., Kuo, H.-P., Lee, F.-L., Chen, H.-K., Yokota, A. & Lo, C.-C.(2006).Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56, 1771–1776.[CrossRef] [Google Scholar]
  33. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  34. Weon, H.-Y., Kim, B.-Y., Yoo, S.-H., Kwon, S.-W., Cho, Y.-H., Go, S.-J. & Stackebrandt, E.(2006).Chryseobacterium wanjuense sp. nov., isolated from greenhouse soil in Korea. Int J Syst Evol Microbiol 56, 1501–1504.[CrossRef] [Google Scholar]
  35. Yamaguchi, S. & Yokoe, M.(2000). A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66, 3337–3343.[CrossRef] [Google Scholar]
  36. Yoon, J.-H., Kang, S.-J. & Oh, T.-K.(2007).Chryseobacterium daeguense sp. nov., isolated from wastewater of a textile dye works. Int J Syst Evol Microbiol 57, 1355–1359.[CrossRef] [Google Scholar]
  37. Young, C.-C., Kämpfer, P., Shen, F.-T., Lai, W.-A. & Arun, A. B.(2005).Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55, 423–426.[CrossRef] [Google Scholar]
  38. Zhou, Y., Dong, J., Wang, X., Huang, X., Zhang, K.-Y., Zhang, Y.-Q., Guo, Y.-F., Lai, R. & Li, W.-J.(2007).Chryseobacterium flavum sp. nov., isolated from polluted soil. Int J Syst Evol Microbiol 57, 1765–1769.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error