1887

Abstract

Four bacterial strains, designated ST18, HM244, HM250 and DI49, were isolated from the fresh faeces of four thoroughbred horses in Japan. Cells were Gram-positive, strictly anaerobic, catalase-negative, non-spore-forming, non-motile rods that occurred in chains. They were placed in the same subcluster based on 16S rRNA gene sequence analysis, phenotypic characteristics and levels of DNA–DNA relatedness. Their DNA G+C content ranged from 36 to 38 mol%. , and belong to cluster XVII of the subphylum. Strain ST18 was most closely related to ATCC 25536 in the phylogenetic tree, but these strains shared only 89.9 % (1336/1486 bp) 16S rRNA gene sequence similarity. , and are homofermentative bacteria, whereas ST18 produced CO from glucose. Whereas the cell-wall peptidoglycan type of and was -Lys–-Ala, that of and the subgroup represented by ST18 was A1 (-Ala–-Glu–-diaminopimelic acid). On the basis of 16S rRNA gene sequence divergence of more than 10 % from as well as phenotypic characteristics, strains ST18, HM244, HM250 and DI49 are considered to represent a novel species of a new genus belonging to the subphylum cluster XVII, for which the name gen. nov., sp. nov. is proposed. The type strain of is ST18 (=JCM 14210 =DSM 18934).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65543-0
2008-12-01
2024-09-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/12/2682.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65543-0&mimeType=html&fmt=ahah

References

  1. Cavalli-Sforza, L. L. & Edwards, A. W. F.(1967). Phylogenetic analysis models and estimation procedures. Am J Hum Genet 19, 233–257. [Google Scholar]
  2. Collins, M. D., Lawson, P. A., Willems, A., Cordoba, J. J., Fernandez-Garayzabal, J., Garcia, P., Cai, J., Hippe, H. & Farrow, J. A. E.(1994). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812–826.[CrossRef] [Google Scholar]
  3. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  4. Ezaki, T., Saidi, S. M., Liu, S.-L., Hashimoto, Y., Yamamoto, H. & Yabuuchi, E.(1990). Rapid procedure to determine the DNA base composition from small amounts of Gram-positive bacteria. FEMS Microbiol Lett 67, 127–130.[CrossRef] [Google Scholar]
  5. Felis, G. E. & Dellaglio, F.(2007). Taxonomy of lactobacilli and bifidobacteria. Curr Issues Intest Microbiol 8, 44–61. [Google Scholar]
  6. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  7. Felsenstein, J.(2005).phylip (phylogeny inference package), version 3.65. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  8. Garrity, G. M., Lilburn, T. G., Cole, J. R., Harrison, S. H., Euzéby, J. & Tindall, B. J.(2007).The Taxonomic Outline of Bacteria and Archaea. Release 7.7. http://www.taxonomicoutline.org/index.php/toba/index
  9. Hammes, W. P. & Hertel, C.(2006). The genera Lactobacillus and Carnobacterium. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 4, pp. 320–403. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  10. Hammes, W. P. & Vogel, R. F.(1995). The genus Lactobacillus. In The Lactic Acid Bacteria, the Genera of Lactic Acid Bacteria, vol. 2, pp. 19–54. Edited by B. J. B. Wood & W. H. Holzapfel. London: Blackie Academic & Professional.
  11. Kageyama, A. & Benno, Y.(2000a).Catenibacterium mitsuokai gen. nov., sp. nov., a Gram-positive anaerobic bacterium isolated from human faeces. Int J Syst Evol Microbiol 50, 1595–1599.[CrossRef] [Google Scholar]
  12. Kageyama, A. & Benno, Y.(2000b). Emendation of genus Collinsella and proposal of Collinsella stercoris sp. nov. and Collinsella intestinalis sp. nov. Int J Syst Evol Microbiol 50, 1767–1774. [Google Scholar]
  13. Kageyama, A., Benno, Y. & Nakase, T.(1999a). Phylogenic and phenotypic evidence for the transfer of Eubacterium fossor to the genus Atopobium as Atopobium fossor comb. nov. Microbiol Immunol 43, 389–395.[CrossRef] [Google Scholar]
  14. Kageyama, A., Benno, Y. & Nakase, T.(1999b). Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. Int J Syst Bacteriol 49, 557–565.[CrossRef] [Google Scholar]
  15. Kluge, A. G. & Farris, F. S.(1969). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef] [Google Scholar]
  16. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  17. Ludwig, W., Kirchhof, G., Weizenegger, M. & Weiss, N.(1992). Phylogenetic evidence for the transfer of Eubacterium suis to the genus Actinomyces as Actinomyces suis comb. nov. Int J Syst Bacteriol 42, 161–165.[CrossRef] [Google Scholar]
  18. Mitsuoka, T.(1969). Vergleichende Untersuchungen uber die Lactobazillen aus den Faeces von Menschen, Schweinen und Huhnern. Zentralbl Bakteriol [Orig] 210, 32–51 (in German). [Google Scholar]
  19. Miyake, T., Watanabe, K., Watanabe, T. & Oyaizu, H.(1998). Phylogenetic analysis of the genus Bifidobacterium and related genera based on 16S rDNA sequences. Microbiol Immunol 42, 661–667.[CrossRef] [Google Scholar]
  20. Nakazawa, F., Sato, M., Poco, S. E., Hashimura, T., Ikeda, T., Kalfas, S., Sundqvist, G. & Hoshino, E.(2000). Description of Mogibacterium pumilum gen. nov., sp. nov. and Mogibacterium vescum gen. nov., sp. nov., and reclassification of Eubacterium timidum (Holdeman et al. 1980) as Mogibacterium timidum gen. nov., comb. nov. Int J Syst Evol Microbiol 50, 679–688.[CrossRef] [Google Scholar]
  21. Pot, B., Ludwig, W., Kersters, K. & Schleifer, K. H.(1994). Taxonomy of lactic acid bacteria. In Bacteriocins of Lactic Acid Bacteria: Microbiology, Genetics and Applications, pp. 13–90. Edited by L. De Vuyst & E. J. Vandamme. London: Blackie Academic & Professional.
  22. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  23. Schleifer, K. H. & Ludwig, W.(1996). Phylogeny of the genus Lactobacillus and related genera. Syst Appl Microbiol 18, 461–467. [Google Scholar]
  24. Sharpe, M. E., Latham, M. J., Garvie, E. I., Zirngibl, J. & Kandler, O.(1973). Two new species of Lactobacillus isolated from the bovine rumen, Lactobacillus ruminis sp. nov. and Lactobacillus vitulinus sp. nov. J Gen Microbiol 77, 37–49.[CrossRef] [Google Scholar]
  25. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  26. Taras, D., Simmering, R., Collins, M. D., Lawson, P. A. & Blaut, M.(2002). Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 52, 423–428. [Google Scholar]
  27. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  28. Wade, W. G., Downes, J., Dymock, D., Himon, S. J., Weightman, A. J., Dewhirst, F. E., Paster, B. J., Tzellas, N. & Coleman, B.(1999). The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 595–600.[CrossRef] [Google Scholar]
  29. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]
  30. Willems, A. & Collins, M. D.(1996). Phylogenetic relationships of the genera Acetobacterium and Eubacterium sensu stricto and reclassification of Eubacterium alactolyticum as Pseudoramibacter alactolyticus gen. nov., comb. nov. Int J Syst Bacteriol 46, 1083–1087.[CrossRef] [Google Scholar]
  31. Willems, A., Amat-Marco, M. & Collins, M. D.(1996). Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the Gram-positive bacteria. Int J Syst Bacteriol 46, 195–199.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.65543-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65543-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2682 - 2686

Details of isolation of strains ST18 , HM244, HM250 and DI49

DNA–DNA relatedness between strain ST18 and related type strains

Phylogenetic relationships of strains ST18 , HM244, HM250 and DI49 with species in clusters XV–XIX of the subphylum based on 16S rRNA gene sequences. The trees were constructed using the maximum-parsimony method (S1) and the maximum-likelihood method (S2).

[Supplementary Tables and Figures](642 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error