Phenotypic and phylogenetic studies were performed on a novel sulfate-reducing bacterium, strain D41, isolated as part of a methanogenic syntrophic culture from a gas condensate-contaminated aquifer undergoing intrinsic bioremediation. The bacterium was a Gram-negative, non-spore-forming, curved rod, motile by a single polar flagellum, which oxidized several alcohols incompletely, including methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 3-methyl-1-butanol (isoamyl alcohol), ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, phenylethanol and benzyl alcohol. Additionally, the strain oxidized H/CO, formate, lactate, pyruvate, maleate, malate and fumarate. Sulfate, thiosulfate and sulfite were used as electron acceptors. The DNA G+C content was 63 mol%. Based on phylogenetic and phenotypic evidence, the novel species sp. nov. is proposed. The type strain is D41 (=ATCC BAA-1241 =DSM 17524).


Article metrics loading...

Loading full text...

Full text loading...



  1. Altenschmidt, U. & Fuchs, G.(1992). Anaerobic toluene oxidation to benzyl alcohol and benzaldehyde in a denitrifying Pseudomonas strain. J Bacteriol 174, 4860–4862. [Google Scholar]
  2. Bock, M., Kneifel, H., Schoberth, S. M. & Sahm, H.(2000). Reduction of halogenated derivatives of benzoic acid to the corresponding alcohols by Desulfovibrio vulgaris PY1. Acta Biotechnol 20, 189–201.[CrossRef] [Google Scholar]
  3. Cline, J. D.(1969). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef] [Google Scholar]
  4. Genthner, B. R. S., Townsend, G. T. & Blattmann, B. O.(1997). Reduction of 3-chlorobenzoate, 3-bromobenzoate, and benzoate to corresponding alcohols by Desulfomicrobium escambiense, isolated from a 3-chlorobenzoate-dechlorinating coculture. Appl Environ Microbiol 63, 4698–4703. [Google Scholar]
  5. Gieg, L. M., Kolhatkar, R. V., McInerney, M. J., Tanner, R. S., Harris, S. H., Jr, Sublette, K. L. & Suflita, J. M.(1999). Intrinsic bioremediation of petroleum hydrocarbons in a gas condensate-contaminated aquifer. Environ Sci Technol 33, 2550–2560.[CrossRef] [Google Scholar]
  6. Grbić-Galić, D. & Vogel, T. M.(1987). Transformation of toluene and benzene by mixed methanogenic cultures. Appl Environ Microbiol 53, 254–260. [Google Scholar]
  7. Hungate, R. E.(1969). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132. [Google Scholar]
  8. Hutson, R. A., Thompson, D. E. & Collins, M. D.(1993). Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia by small-subunit rRNA gene sequences. FEMS Microbiol Lett 108, 103–110.[CrossRef] [Google Scholar]
  9. Kaiser, J.-P. & Hanselmann, K. W.(1982). Fermentative metabolism of substituted monoaromatic compounds by a bacterial community from anaerobic sediments. Arch Microbiol 133, 185–194.[CrossRef] [Google Scholar]
  10. Liou, J. S.-C., Balkwill, D. L., Drake, G. R. & Tanner, R. S.(2005).Clostridium carboxidivorans sp. nov., a solvent-producing clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov. Int J Syst Evol Microbiol 55, 2085–2091.[CrossRef] [Google Scholar]
  11. Lovley, D. R.(2001). Anaerobes to the rescue. Science 293, 1444–1446.[CrossRef] [Google Scholar]
  12. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  13. Nanninga, H. J. & Gottschal, J. C.(1987). Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53, 802–809. [Google Scholar]
  14. Nicholas, K. B., Nicholas, H. B., Jr & Deerfield, D. W., II(1997). GeneDoc: analysis and visualization of genetic variation. EMBNet News4 (2), 1–4. http://www.embnet.org/download/embnetnews/embnet_news_4_2.pdf
  15. Ollivier, B., Cord-Ruwisch, R., Hatchikian, E. C. & Garcia, J. L.(1988). Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149, 447–450.[CrossRef] [Google Scholar]
  16. Oppenberg, B. & Schink, B.(1990). Anaerobic degradation of 1,3-propanediol by sulfate-reducing and by fermenting bacteria. Antonie van Leeuwenhoek 57, 205–213.[CrossRef] [Google Scholar]
  17. Ouattara, A. S., Cuzin, N., Reaore, A. S. & Garcia, J.-L.(1992). Anaerobic degradation of 1,2-propanediol by a new Desulfovibrio strain and D. alcoholivorans. Arch Microbiol 158, 218–225.[CrossRef] [Google Scholar]
  18. Ouattara, A. S., Patel, B. K. C., Cayol, J.-L., Cuzin, N., Traore, A. S. & Garcia, J.-L.(1999). Isolation and characterization of Desulfovibrio burkinensis sp. nov. from an African ricefield, and phylogeny of Desulfovibrio alcoholivorans. Int J Syst Bacteriol 49, 639–643.[CrossRef] [Google Scholar]
  19. Page, R. D. M.(1996). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358. [Google Scholar]
  20. Pearson, W. R. & Lipman, D. J.(1985). Rapid and sensitive protein similarity searches. Science 227, 1435–1441.[CrossRef] [Google Scholar]
  21. Postgate, J. R.(1959). A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183, 481–482. [Google Scholar]
  22. Qatibi, A. I., Nivière, V. & Garcia, J. L.(1991).Desulfovibrio alcoholovorans sp. nov., a sulfate-reducing bacterium able to grow on glycerol, 1,2- and 1,3-propanediol. Arch Microbiol 155, 143–148.[CrossRef] [Google Scholar]
  23. Qatibi, A. I., Bennisse, R., Jana, M. & Garcia, J.-L.(1998). Anaerobic degradation of glycerol by Desulfovibrio fructosovorans and D. carbinolicus and evidence for glycerol-dependent utilization of 1,2-propanediol. Curr Microbiol 36, 283–290.[CrossRef] [Google Scholar]
  24. Rasmussen, S. W.(2002). SEQtools, a software package for analysis of nucleotide and protein sequences. http://www.seqtools.dk
  25. Reichenbecher, W. & Schink, B.(1997).Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone (1,2,4-trihydroxybenzene). Arch Microbiol 168, 338–344.[CrossRef] [Google Scholar]
  26. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  27. Sittig, M.(1991).Handbook of Toxic and Hazardous Chemicals and Carcinogens, 3rd edn. Park Ridge, NJ: Noyes Publications.
  28. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rDNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  29. Tanaka, K.(1992). Anaerobic oxidation of 1,5-pentanediol, 2-butanol, and 2-propanol by a newly isolated sulfate-reducer. J Ferment Bioeng 73, 362–365.[CrossRef] [Google Scholar]
  30. Tanner, R. S.(1996). Monitoring sulfide and sulfate-reducing bacteria. In Proceedings of the Fifth International Conference on Microbially Enhanced Oil Recovery and Related Biotechnology for Solving Environmental Problems, CONF-9509173, pp. 353–362. Edited by R. Bryant. Springfield, VA: NTIS.
  31. Tanner, R. S.(2002). Cultivation of bacteria and fungi. In Manual of Environmental Microbiology, 2nd edn, pp. 62–70. Edited by C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney & L. D. Stetzenbach. Washington, DC: American Society for Microbiology.
  32. Thauer, R. K., Jungermann, K. & Decker, K.(1977). Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41, 100–180. [Google Scholar]
  33. Vanderberg, L. A., Krieger-Grumbine, R. & Taylor, M. N.(2000). Evidence for diverse oxidations in the catabolism of toluene by Rhodococcus rhodochrous strain OFS. Appl Microbiol Biotechnol 53, 447–452.[CrossRef] [Google Scholar]
  34. Zellner, G., Kneifel, H. & Winter, J.(1990). Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains. Appl Environ Microbiol 56, 2228–2233. [Google Scholar]

Data & Media loading...


Transmission electron micrograph of a negatively stained cell of strain D41 . Bar, 1 µm.


Time courses of conversion of benzyl alcohol to benzoate by strain D41 in pure culture (Fig. S2) and conversion of benzyl alcohol to benzoate with concurrent methane production by strain D41 in co-culture with a hydrogen-using methanogen, strain M41 (Fig. S3). [PDF](68 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error