1887

Abstract

An aerobic, motile, Gram-negative, ice-active substance-producing, rod-shaped psychrophile, designated strain ArB 0140, was isolated from seawater collected from near a glacier in Kongsfjorden, Svalbard Archipelago, Norway. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain ArB 0140 showed a distinct phyletic line within the genus . Characteristic chemotaxonomic data [predominant isoprenoid quinone, Q8; major fatty acids, C, C, C, C and C (docosahexaenoic acid; DHA)] also corroborated the affiliation of strain ArB 0140 to the genus . The maximal growth rate of the novel strain was observed at 9 °C, with a maximum temperature for growth of 18 °C. The genomic DNA G+C content was 46.9 mol%. Based on the data obtained from this polyphasic study, including DNA–DNA relatedness, physiological and biochemical tests and ice-controlling activity, strain ArB 0140 was found to be genetically and phenotypically different from other recognized species of the genus . Therefore strain ArB 0140 represents a novel species, for which the name sp. nov. is proposed. The type strain is ArB 0140 (=KCTC 10814=KCCM 42845=JCM 14759).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65501-0
2008-04-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/817.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65501-0&mimeType=html&fmt=ahah

References

  1. Benediktsdottir, E., Verdonck, L., Sproer, C., Helgason, S. & Swings, J. ( 2000; ). Characterization of Vibrio viscosus and Vibrio wodanis isolated at different geographical locations: a proposal for reclassification of Vibrio viscosus as Moritella viscosa comb. nov. Int J Syst Evol Microbiol 50, 479–488.[CrossRef]
    [Google Scholar]
  2. Chun, J. & Goodfellow, M. ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45, 240–245.[CrossRef]
    [Google Scholar]
  3. Collins, M. D. ( 1985; ). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366.
    [Google Scholar]
  4. Delong, E. F., Franks, D. G. & Yayanos, A. A. ( 1997; ). Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl Environ Microbiol 63, 2105–2108.
    [Google Scholar]
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  6. Kato, C., Li, L., Nogi, Y., Nakamura, Y., Tamaoka, J. & Horikoshi, K. ( 1998; ). Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64, 1510–1513.
    [Google Scholar]
  7. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  8. MIDI ( 1999; ). Sherlock Microbial Identification System, Operating Manual, version 3.10. Newark, DE: MIDI, Inc.
  9. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H. ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef]
    [Google Scholar]
  10. Nogi, Y. & Kato, C. ( 1999; ). Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 3, 71–77.[CrossRef]
    [Google Scholar]
  11. Nogi, Y., Kato, C. & Horikoshi, K. ( 1998; ). Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J Gen Appl Microbiol 44, 289–295.[CrossRef]
    [Google Scholar]
  12. Rainey, F. A., Dorsch, M., Morgan, H. W. & Stackebrandt, E. ( 1992; ). 16S rDNA analysis of Spirochaeta thermophila: its phylogenetic position and implications for the systematics of the order Spirochaetales. Syst Appl Microbiol 15, 197–202.
    [Google Scholar]
  13. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N. & Chandler, R. E. ( 1983; ). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154, 1222–1226.
    [Google Scholar]
  14. Raymond, J. A. ( 2000; ). Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms. Polar Biol 23, 721–729.[CrossRef]
    [Google Scholar]
  15. Raymond, J. A. & Fritsen, C. H. ( 2000; ). Ice-active substances associated with Antarctic freshwater and terrestrial photosynthetic organisms. Antarct Sci 12, 418–424.
    [Google Scholar]
  16. Raymond, J. A. & Fritsen, C. H. ( 2001; ). Semipurification and ice recrystallization inhibition activity of ice-active substances associated with Antarctic photosynthetic organisms. Cryobiology 43, 63–70.[CrossRef]
    [Google Scholar]
  17. Raymond, J. A. & Knight, C. A. ( 2003; ). Ice binding, recrystallization inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46, 174–181.[CrossRef]
    [Google Scholar]
  18. Raymond, J. A., Sullivan, C. W. & DeVries, A. L. ( 1994; ). Release of an ice-active substance by Antarctic sea ice diatoms. Polar Biol 14, 71–75.
    [Google Scholar]
  19. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  20. Skerman, V. B. D. ( 1967; ). A Guide to the Identification of the Genera of Bacteria, 2nd edn. Baltimore: Williams & Wilkins.
  21. Steven, S. E. ( 1990; ). Molecular systematics of Vibrio and Photobacterium. PhD thesis, University of Maryland, College Park, MD, USA.
  22. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  23. Urakawa, H., Kita-Tsukamoto, K., Steven, S. E., Ohwada, K. & Colwell, R. R. ( 1998; ). A proposal to transfer Vibrio marinus (Russell 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165, 373–378.[CrossRef]
    [Google Scholar]
  24. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  25. Wharton, D. A., Barrett, J., Goodall, G., Marshall, C. J. & Ramlov, H. ( 2005; ). Ice active proteins from an Antarctic nematode, Panagrolaimus dividi. Cryobiology 51, 198–207.[CrossRef]
    [Google Scholar]
  26. Xu, Y., Nogi, Y., Kato, C., Liang, Z., Ruger, H. J., De Kegel, D. & Glansdorff, N. ( 2003; ). Moritella profunda sp. nov. and Moritella abyssi sp. nov., two psychropiezophilic organisms isolated from deep Atlantic sediments. Int J Syst Evol Microbiol 53, 533–538.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65501-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65501-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 817 - 820

A scanning electron micrograph of cells of strain ArB 0140 .

A graph showing the growth rate of strain ArB 0140 over a range of temperatures.

Images showing the ice-modifiying activity of strain ArB 0140 and other species of the genus .

Combined file [ PDF] 94 KB



PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error