and have similar phenotypes and genomes making rapid differentiation of these two species difficult. The first standard multilocus sequence analysis (MLSA) scheme for the identification of these species is described. A collection of 45 representative isolates from different geographical regions and hosts was examined using segments of the housekeeping genes , and . Overall, the closest phylogenetic neighbours of these species were and . and formed separate species clusters on the basis of each gene, suggesting that these genes are useful as identification markers. These species clusters arose by the accumulation of point mutations. The gene showed the highest resolution for differentiating and . The maximum interspecies gene sequence similarity was 91 %. Clearly, strains were more heterogeneous than strains at the three loci. It is suggested that vibrio species may be defined on the basis of MLSA data. A vibrio species was defined as a group of strains forming a monophyletic group on the basis of these loci and with an intraspecific sequence similarity of at least 95 %. and isolates can be readily identified through the open database resource ‘The Taxonomy of Vibrios’ (http://www.taxvibrio.lncc.br/).


Article metrics loading...

Loading full text...

Full text loading...



  1. Bik, E. M., Bunschoten, A. E., Gouw, R. D. & Mooi, F. R.(1995). Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J 14, 209–216. [Google Scholar]
  2. Blake, P. A., Weaver, R. W. & Hollins, D. G.(1980). Diseases of humans (other than cholera) caused by vibrios. Annu Rev Microbiol 34, 341–367.[CrossRef] [Google Scholar]
  3. Boyd, E. F., Moyer, K. E., Shi, L. & Waldor, M. K.(2000). Infectious CTXΦ and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun 68, 1507–1513.[CrossRef] [Google Scholar]
  4. Campos, E., Bolanos, H., Acuna, M. T., Diaz, G., Matamoros, M. C., Raventos, H., Sanchez, L. M., Sanchez, O. & Barquero, C.(1996).Vibrio mimicus diarrhea following ingestion of raw turtle eggs. Appl Environ Microbiol 62, 1141–1144. [Google Scholar]
  5. Coelho, A., Andrade, J. R., Vicente, A. C. & Salles, C. A.(1995). New variant of Vibrio cholerae O1 from clinical isolates in Amazonia. J Clin Microbiol 33, 114–118. [Google Scholar]
  6. Davis, B. R., Fanning, G. R., Madden, J. M., Steigerwalt, A. G., Bradford, H. B., Jr, Smith, H. L., Jr & Brenner, D. J.(1981). Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J Clin Microbiol 14, 631–639. [Google Scholar]
  7. Desmarchelier, P. & Reichelt, J. L.(1984). A phenotypic and genetic study of sucrose nonfermenting strains of Vibrio mimicus and Vibrio cholerae. Curr Microbiol 10, 41–47.[CrossRef] [Google Scholar]
  8. Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., Stackebrandt, E., Van de Peer, Y., Vandamme, P. & other authors(2005). Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3, 733–739.[CrossRef] [Google Scholar]
  9. Hunter, P. R.(1997).Waterborne Disease: Epidemiology and Ecology. England: John Wiley and Sons.
  10. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. H. Munro. London: Academic Press.
  11. Kay, B. A., Boop, C. A. & Wells, J. G.(1994). Isolation and identification of Vibrio cholerae O1 from fecal specimens. In Vibrio cholerae and Cholera. Molecular to Global Perspectives, pp. 3–25. Edited by K. Wachsmuth, P. A. Blake & O. Olsvik. Washington: American Society for Microbiology.
  12. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  14. Mooi, F. R. & Bik, E. M.(1997). The evolution of epidemic Vibrio cholerae strains. Trends Microbiol 5, 161–165.[CrossRef] [Google Scholar]
  15. O'Shea, Y. A., Reen, F. J., Quirke, A. M. & Boyd, E. F.(2004). Evolutionary genetic analysis of the emergence of epidemic Vibrio cholerae isolates on the basis of comparative nucleotide sequence analysis and multilocus virulence gene profiles. J Clin Microbiol 42, 4657–4671.[CrossRef] [Google Scholar]
  16. Ramos, F. L., Lins-Laison, Z. C., da Silva, E. L., Proietti, A. A., Jr, Mareco, M. L. & Lamarao, M. L.(1997). Cholera in north Brazil: on the occurrence of strains of Vibrio cholerae O1, which fail to ferment sucrose during routine plating on thiosulphate-citrate-bile salt-sucrose agar (TCBS). A new problem in diagnosis and control? Rev Latinoam Microbiol 39, 141–144. [Google Scholar]
  17. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  18. Tajima, F. & Nei, M.(1984). Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1, 269–285. [Google Scholar]
  19. Thompson, F. L. & Swings, J.(2006). Taxonomy of the vibrios. In The Biology of Vibrios, pp. 29–43. Edited by F. L. Thompson, B. Austin & J. Swings. Washington: American Society for Microbiology.
  20. Thompson, F. L., Hoste, B., Vandemeulebroecke, K. & Swings, J.(2001). Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24, 520–538.[CrossRef] [Google Scholar]
  21. Thompson, F. L., Thompson, C. C., Vicente, A. C. P., Theophilo, G. N. D., Hofer, E. & Swings, J.(2003). Genomic diversity of clinical and environmental Vibrio cholerae strains isolated in Brazil between 1991 and 2001 as revealed by FAFLP analysis. J Clin Microbiol 41, 1946–1950.[CrossRef] [Google Scholar]
  22. Thompson, F. L., Iida, T. & Swings, J.(2004). Biodiversity of vibrios. Microbiol Mol Biol Rev 68, 403–431.[CrossRef] [Google Scholar]
  23. Thompson, F. L., Gevers, D., Thompson, C. C., Dawyndt, P., Naser, S., Hoste, B., Munn, C. B. & Swings, J.(2005). Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71, 5107–5115.[CrossRef] [Google Scholar]
  24. Thompson, F. L., Gomez-Gil, B., Ribeiro Vasconcelos, A. T. & Sawabe, T.(2007). Multilocus sequence analysis reveals that Vibrio harveyi and Vibrio campbellii form distinct species. Appl Environ Microbiol 73, 4279–4285.[CrossRef] [Google Scholar]
  25. Uchimura, M., Koiwai, K., Tsuruoka, Y. & Tanaka, H.(1993). High prevalence of thermostable direct hemolysin (TDH)-like toxin in Vibrio mimicus strains isolated from diarrhoeal patients. Epidemiol Infect 111, 49–53.[CrossRef] [Google Scholar]
  26. Vieira, V. V., Teixeira, L. F. M., Vicente, A. C. P., Momen, H. & Salles, C. A.(2001). Differentiation of environmental and clinical isolates of Vibrio mimicus from Vibrio cholerae by multi locus enzyme electrophoresis. Appl Environ Microbiol 67, 2360–2364.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 3, pp. 617 - 621

A description of the methods used for recombination analysis.

Strain list.

Amplification and sequencing primers.

Features of the genes.

Signatures of and for the , and genes.

[ Combined PDF file] 90 KB

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error