1887

Abstract

DNA–DNA hybridization (DDH), the gold standard for bacterial species delineation, is a laborious method and the alternative, average nucleotide identity (ANI), a genomic sequence-derived parameter, is not applicable to non-sequenced species. A universal cut-off value to delineate bacterial species does not exist, yet a DDH value <70 % and ANI <95±0.5 % have proved useful in selected examples. We herein compare published values for DDH and ANI with sequence similarity of gene sequences retrieved from GenBank for strains of 230 bacterial species representative of 45 genera. Intraspecific sequence similarity was 98.2–100 %. We observed that an gene sequence similarity ≤97.7 % significantly correlated with a DDH value <70 % and an ANI value <94.3 %. An gene sequence similarity <85.5 % correlated with membership of different genera. When applied to fastidious and as-yet-uncultivated organisms lacking experimental DDH values, these cut-off values suggested that ‘ Blochmannia pennsylvanicus’ and ‘ Blochmannia floridarius’ may belong to different genera, that the different endosymbiotic organisms may belong to different genera and that, while the tsetse fly enteric symbiont may belong to the , the endocellular obligate symbiont from the same host may belong to the group of as-yet-uncultivated gammaproteobacteria. gene sequence similarity provides an efficient supplement to DDH and ANI measurements to delineate bacterial species and genera, including delineation of as-yet-uncultivated, non-sequenced organisms.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65440-0
2008-08-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/8/1807.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65440-0&mimeType=html&fmt=ahah

References

  1. Adékambi, T. & Drancourt, M. ( 2004; ). Dissection of phylogenetic relationships among 19 rapidly growing Mycobacterium species by 16S rRNA, hsp65, sodA, recA and rpoB gene sequencing. Int J Syst Evol Microbiol 54, 2095–2105.[CrossRef]
    [Google Scholar]
  2. Adékambi, T., Colson, P. & Drancourt, M. ( 2003; ). rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41, 5699–5708.[CrossRef]
    [Google Scholar]
  3. Adékambi, T., Reynaud-Gaubert, M., Greub, G., Gevaudan, M. J., La Scola, B., Raoult, D. & Drancourt, M. ( 2004; ). Amoebal coculture of “Mycobacterium massiliense” sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol 42, 5493–5501.[CrossRef]
    [Google Scholar]
  4. Adékambi, T., Berger, P., Raoult, D. & Drancourt, M. ( 2006a; ). rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 56, 133–143.[CrossRef]
    [Google Scholar]
  5. Adékambi, T., Stein, A., Carvajal, J., Raoult, D. & Drancourt, M. ( 2006b; ). Description of Mycobacterium conceptionense sp. nov., a Mycobacterium fortuitum group organism isolated from a posttraumatic osteitis inflammation. J Clin Microbiol 44, 1268–1273.[CrossRef]
    [Google Scholar]
  6. Adékambi, T., Raoult, D. & Drancourt, M. ( 2006c; ). Mycobacterium barrassiae sp. nov., a Mycobacterium moriokaense group species associated with chronic pneumonia. J Clin Microbiol 44, 3493–3498.[CrossRef]
    [Google Scholar]
  7. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  8. Amann, R. I., Ludwig, W. & Schleifer, K. H. ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143–169.
    [Google Scholar]
  9. Blackall, P. J., Bojesen, A. M., Christensen, H. & Bisgaard, M. ( 2007; ). Reclassification of [Pasteurella] trehalosi as Bibersteinia trehalosi gen. nov., comb. nov. Int J Syst Evol Microbiol 57, 666–674.[CrossRef]
    [Google Scholar]
  10. Brenner, D. J., Fanning, G. R., Johnson, K. E., Citarella, R. V. & Falkow, S. ( 1969; ). Polynucleotide sequence relationships among members of Enterobacteriaceae. J Bacteriol 98, 637–650.
    [Google Scholar]
  11. Brenner, D. J., Fanning, G. R., Skerman, F. J. & Falkow, S. ( 1972; ). Polynucleotide sequence divergence among strains of Escherichia coli and closely related organisms. J Bacteriol 109, 953–965.
    [Google Scholar]
  12. Case, R. J., Boucher, Y., Dahllof, I., Holmstrom, C., Doolittle, W. F. & Kjelleberg, S. ( 2007; ). Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73, 278–288.[CrossRef]
    [Google Scholar]
  13. Christensen, H., Kuhnert, P., Busse, H. J., Frederiksen, W. C. & Bisgaard, M. ( 2007; ). Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae. Int J Syst Evol Microbiol 57, 166–178.[CrossRef]
    [Google Scholar]
  14. Clarridge, J. E., III ( 2004; ). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17, 840–862.[CrossRef]
    [Google Scholar]
  15. Coenye, T. & Vandamme, P. ( 2004; ). Use of the genomic signature in bacterial classification and identification. Syst Appl Microbiol 27, 175–185.[CrossRef]
    [Google Scholar]
  16. Crosa, J. H., Brenner, D. J., Ewing, W. H. & Falkow, S. ( 1973; ). Molecular relationships among the Salmonelleae. J Bacteriol 115, 307–315.
    [Google Scholar]
  17. Cutler, S. J., Akintunde, C. O., Moss, J., Fukunaga, M., Kurtenbach, K., Talbert, A., Zhang, H., Wright, D. J. & Warrell, D. A. ( 1999; ). Successful in vitro cultivation of Borrelia duttonii and its comparison with Borrelia recurrentis. Int J Syst Bacteriol 49, 1793–1799.[CrossRef]
    [Google Scholar]
  18. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  19. Devriese, L. A., Riegel, P., Hommez, J., Vaneechoutte, M., de Baere, T. & Haesebrouck, F. ( 2000; ). Identification of Corynebacterium glucuronolyticum strains from the urogenital tract of humans and pigs. J Clin Microbiol 38, 4657–4659.
    [Google Scholar]
  20. Drancourt, M. & Raoult, D. ( 1999; ). Characterization of mutations in the rpoB gene in naturally rifampin-resistant Rickettsia species. Antimicrob Agents Chemother 43, 2400–2403.
    [Google Scholar]
  21. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  22. Foster, J., Ganatra, M., Kamal, I., Ware, J., Makarova, K., Ivanova, N., Bhattacharyya, A., Kapatral, V., Kumar, S. & other authors ( 2005; ). The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3, e121 [CrossRef]
    [Google Scholar]
  23. Fournier, P. E., Suhre, K., Fournous, G. & Raoult, D. ( 2006; ). Estimation of prokaryote genomic DNA G+C content by sequencing universally conserved genes. Int J Syst Evol Microbiol 56, 1025–1029.[CrossRef]
    [Google Scholar]
  24. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef]
    [Google Scholar]
  25. Gardan, L., Shafik, H., Belouin, S., Broch, R., Grimont, F. & Grimont, P. A. D. ( 1999; ). DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov. (ex Sutic and Dowson 1959). Int J Syst Bacteriol 49, 469–478.[CrossRef]
    [Google Scholar]
  26. Gasparich, G. E., Whitcomb, R. F., Dodge, D., French, F. E., Glass, J. & Williamson, D. L. ( 2004; ). The genus Spiroplasma and its non-helical descendants: phylogenetic classification, correlation with phenotype and roots of the Mycoplasma mycoides clade. Int J Syst Evol Microbiol 54, 893–918.[CrossRef]
    [Google Scholar]
  27. Gevers, D., Cohan, F. M., Lawrence, J. G., Spratt, B. G., Coenye, T., Feil, E. J., Stackebrandt, E., Van de Peer, Y., Vandamme, P. & other authors ( 2005; ). Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol 3, 733–739.[CrossRef]
    [Google Scholar]
  28. Godoy, D., Randle, G., Simpson, A. J., Aanensen, D. M., Pitt, T. L., Kinoshita, R. & Spratt, B. G. ( 2003; ). Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41, 2068–2079.[CrossRef]
    [Google Scholar]
  29. Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P. & Tiedje, J. M. ( 2007; ). DNA–DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57, 81–91.[CrossRef]
    [Google Scholar]
  30. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  31. Khamis, A., Colson, P., Raoult, D. & La Scola, B. ( 2003; ). Usefulness of rpoB gene sequencing for identification of Afipia and Bosea species, including a strategy for choosing discriminative partial sequences. Appl Environ Microbiol 69, 6740–6749.[CrossRef]
    [Google Scholar]
  32. Khamis, A., Raoult, D. & La Scola, B. ( 2004; ). rpoB gene sequencing for identification of Corynebacterium species. J Clin Microbiol 42, 3925–3931.[CrossRef]
    [Google Scholar]
  33. Kim, K. S., Ko, K. S., Chang, M. W., Hahn, T. W., Hong, S. K. & Kook, Y. H. ( 2003; ). Use of rpoB sequences for phylogenetic study of Mycoplasma species. FEMS Microbiol Lett 226, 299–305.[CrossRef]
    [Google Scholar]
  34. Konstantinidis, K. T. & Tiedje, J. M. ( 2005a; ). Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102, 2567–2572.[CrossRef]
    [Google Scholar]
  35. Konstantinidis, K. T. & Tiedje, J. M. ( 2005b; ). Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187, 6258–6264.[CrossRef]
    [Google Scholar]
  36. Koonin, E. V. ( 2003; ). Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat Rev Microbiol 1, 127–136.[CrossRef]
    [Google Scholar]
  37. Korczak, B. M., Stieber, R., Emler, S., Burnens, A. P., Frey, J. & Kuhnert, P. ( 2006; ). Genetic relatedness within the genus Campylobacter inferred from rpoB sequences. Int J Syst Evol Microbiol 56, 937–945.[CrossRef]
    [Google Scholar]
  38. Koski, L. B. & Golding, G. B. ( 2001; ). The closest blast hit is often not the nearest neighbor. J Mol Evol 52, 540–542.[CrossRef]
    [Google Scholar]
  39. Kuhnert, P. & Korczak, B. M. ( 2006; ). Prediction of whole-genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). Microbiology 152, 2537–2548.[CrossRef]
    [Google Scholar]
  40. Kunin, V., Ahren, D., Goldovsky, L., Janssen, P. & Ouzounis, C. A. ( 2005; ). Measuring genome conservation across taxa: divided strains and united kingdoms. Nucleic Acids Res 33, 616–621.[CrossRef]
    [Google Scholar]
  41. Lan, R. & Reeves, P. R. ( 2001; ). When does a clone deserve a name? A perspective on bacterial species based on population genetics. Trends Microbiol 9, 419–424.[CrossRef]
    [Google Scholar]
  42. La Scola, B., Gundi, V. A., Khamis, A. & Raoult, D. ( 2006; ). Sequencing of the rpoB gene and flanking spacers for molecular identification of Acinetobacter species. J Clin Microbiol 44, 827–832.[CrossRef]
    [Google Scholar]
  43. Lo, N., Paraskevopoulos, C., Bourtzis, K., O'Neill, S. L., Werren, J. H., Bordenstein, S. R. & Bandi, C. ( 2007; ). Taxonomic status of the intracellular bacterium Wolbachia pipientis. Int J Syst Evol Microbiol 57, 654–657.[CrossRef]
    [Google Scholar]
  44. Marianelli, C., Ciuchini, F., Tarantino, M., Pasquali, P. & Adone, R. ( 2006; ). Molecular characterization of the rpoB gene in Brucella species: new potential molecular markers for genotyping. Microbes Infect 8, 860–865.[CrossRef]
    [Google Scholar]
  45. Masuzawa, T., Takada, N., Kudeken, M., Fukui, T., Yano, Y., Ishiguro, F., Kawamura, Y., Imai, Y. & Ezaki, T. ( 2001; ). Borrelia sinica sp. nov., a Lyme disease-related Borrelia species isolated in China. Int J Syst Evol Microbiol 51, 1817–1824.[CrossRef]
    [Google Scholar]
  46. Mollet, C., Drancourt, M. & Raoult, D. ( 1998; ). Determination of Coxiella burnetii rpoB sequence and its use for phylogenetic analysis. Gene 207, 97–103.[CrossRef]
    [Google Scholar]
  47. Munson, M. A., Baumann, P. & Kinsey, M. G. ( 1991; ). Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Bacteriol 41, 566–568.[CrossRef]
    [Google Scholar]
  48. Rappé, M. S. & Giovannoni, S. J. ( 2003; ). The uncultured microbial majority. Annu Rev Microbiol 57, 369–394.[CrossRef]
    [Google Scholar]
  49. Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. ( 2004; ). Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38, 525–552.[CrossRef]
    [Google Scholar]
  50. Rogul, M., Brendle, J. J., Haapala, D. K. & Alexander, A. D. ( 1970; ). Nucleic acid similarities among Pseudomonas pseudomallei, Pseudomonas multivorans, and Actinobacillus mallei. J Bacteriol 101, 827–835.
    [Google Scholar]
  51. Rosselló-Mora, R. & Amann, R. ( 2001; ). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef]
    [Google Scholar]
  52. Schinsky, M. F., Morey, R. E., Steigerwalt, A. G., Douglas, M. P., Wilson, R. W., Floyd, M. M., Butler, W. R., Daneshvar, M. I., Brown-Elliott, B. A. & other authors ( 2004; ). Taxonomic variation in the Mycobacterium fortuitum third biovariant complex: description of Mycobacterium boenickei sp. nov., Mycobacterium houstonense sp. nov., Mycobacterium neworleansense sp. nov. and Mycobacterium brisbanense sp. nov. and recognition of Mycobacterium porcinum from human clinical isolates. Int J Syst Evol Microbiol 54, 1653–1667.[CrossRef]
    [Google Scholar]
  53. Schloss, P. D. & Handelsman, J. ( 2004; ). Status of the microbial census. Microbiol Mol Biol Rev 68, 686–691.[CrossRef]
    [Google Scholar]
  54. Sreevatsan, S., Pan, X., Stockbauer, K. E., Connell, N. D., Kreiswirth, B. N., Whittam, T. S. & Musser, J. M. ( 1997; ). Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci U S A 94, 9869–9874.[CrossRef]
    [Google Scholar]
  55. Stackebrandt, E. & Ebers, J. ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 4, 152–155.
    [Google Scholar]
  56. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  57. Stinear, T. P., Seemann, T., Pidot, S., Frigui, W., Reysset, G., Garnier, T., Meurice, G., Simon, D., Bouchier, C. & other authors ( 2007; ). Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 17, 192–200.[CrossRef]
    [Google Scholar]
  58. Taillardat-Bisch, A.-V., Raoult, D. & Drancourt, M. ( 2003; ). RNA polymerase β-subunit-based phylogeny of Ehrlichia spp., Anaplasma spp., Neorickettsia spp. and Wolbachia pipientis. Int J Syst Evol Microbiol 53, 455–458.[CrossRef]
    [Google Scholar]
  59. Tourova, T. P. & Antonov, A. S. ( 1987; ). Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol 19, 333–355.
    [Google Scholar]
  60. Ursing, J. B., Rosselló-Mora, R. A., Garcia-Valdes, E. & Lalucat, J. ( 1995; ). Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45, 604 [CrossRef]
    [Google Scholar]
  61. van Passel, M. W., Bart, A. & van der Ende, A. ( 2005; ). Default taxonomy and the genomics era. Microbiology 151, 2818–2820.[CrossRef]
    [Google Scholar]
  62. Vandamme, P., Pot, B., Gillis, M., de Vos, P., Kersters, K. & Swings, J. ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60, 407–438.
    [Google Scholar]
  63. Verger, J. M., Grimont, F., Grimont, P. A. D. & Grayon, M. ( 1985; ). Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization. Int J Syst Bacteriol 35, 292–295.[CrossRef]
    [Google Scholar]
  64. Verger, J. M., Grimont, F., Grimont, P. A. D. & Grayon, M. ( 1987; ). Taxonomy of the genus Brucella. Ann Inst Pasteur Microbiol 138, 235–238.
    [Google Scholar]
  65. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  66. Wu, M., Sun, L. V., Vamathevan, J., Riegler, M., Deboy, R., Brownlie, J. C., McGraw, E. A., Martin, W., Esser, C. & other authors ( 2004; ). Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2, E69 [CrossRef]
    [Google Scholar]
  67. Yabuuchi, E., Kawamura, Y., Ezaki, T., Ikedo, M., Dejsirilert, S., Fujiwara, N., Naka, T. & Kobayashi, K. ( 2000; ). Burkholderia uboniae sp. nov., l-arabinose-assimilating but different from Burkholderia thailandensis and Burkholderia vietnamiensis. Microbiol Immunol 44, 307–317.[CrossRef]
    [Google Scholar]
  68. Yamamoto, S., Bouvet, P. J. & Harayama, S. ( 1999; ). Phylogenetic structures of the genus Acinetobacter based on gyrB sequences: comparison with the grouping by DNA–DNA hybridization. Int J Syst Bacteriol 49, 87–95.[CrossRef]
    [Google Scholar]
  69. Yip, M. J., Porter, J. L., Fyfe, J. A., Lavender, C. J., Portaels, F., Rhodes, M., Kator, H., Colorni, A., Jenkin, G. A. & Stinear, T. ( 2007; ). Evolution of Mycobacterium ulcerans and other mycolactone-producing mycobacteria from a common Mycobacterium marinum progenitor. J Bacteriol 189, 2021–2029.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65440-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65440-0
Loading

Data & Media loading...

Supplements

Phylogenetic tree of complete gene sequences of closely related gammaproteobacteria using the maximum-likelihood method. [ PDF] 71 KB

PDF

Combined file [ PDF] 387 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error