1887

Abstract

A thermophilic, strictly anaerobic, sulfur-reducing epsilonproteobacterium (strain AmH) isolated from deep-sea hydrothermal vents is described. Cells were motile, Gram-negative rods. Growth was observed at 30–55 °C, pH 6.0–9.0 and 2–5 % (w/v) NaCl. Chemolithoautotrophic growth occurred with molecular hydrogen or formate as the electron donor and elemental sulfur as the electron acceptor, producing hydrogen sulfide. Heterotrophic and mixotrophic growth occurred with formate as a source of carbon. The dominant phospholipid fatty acids were C 7 (73.26 % of the total), C 7 (12.70 %) and C (12.27 %). The genomic DNA G+C content was 33.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences placed strain AmH within the family of the . DNA–DNA hybridization experiments between strain AmH and DSM 13520 revealed a level of relatedness of 34.6 % between the two strains. Based on physiological and phylogenetic characteristics, strain AmH is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is AmH (=ATCC BAA-1463 =DSM 18972).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65435-0
2008-07-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/7/1598.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65435-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M.-A. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  2. Campbell, B. J. & Cary, S. C. ( 2004; ). Abundance of reverse tricarboxylic acid cycle genes in free-living microorganisms at deep-sea hydrothermal vents. Appl Environ Microbiol 70, 6282–6289.[CrossRef]
    [Google Scholar]
  3. Campbell, B. J., Jeanthon, C., Kostka, J. E., Luther, G. W., III & Cary, S. C. ( 2001; ). Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67, 4566–4572.[CrossRef]
    [Google Scholar]
  4. Campbell, B. J., Engel, A. S., Porter, M. L. & Takai, K. ( 2006; ). The versatile ϵ-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4, 458–468.[CrossRef]
    [Google Scholar]
  5. Cary, S. C., Shank, T. & Stein, J. ( 1998; ). Worms bask in extreme temperatures. Nature 391, 545–546.[CrossRef]
    [Google Scholar]
  6. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  7. Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., Chandra, S., McGarrell, D. M., Schmidt, T. M. & other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  8. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  9. Huber, J. A., Butterfield, D. A. & Baross, J. A. ( 2003; ). Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 43, 393–409.[CrossRef]
    [Google Scholar]
  10. Hugler, M., Wirsen, C. O., Fuchs, G., Taylor, C. D. & Sievert, S. M. ( 2005; ). Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the ϵ subdivision of proteobacteria. J Bacteriol 187, 3020–3027.[CrossRef]
    [Google Scholar]
  11. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  12. Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003; ). Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ϵ-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53, 1801–1805.[CrossRef]
    [Google Scholar]
  13. Miroshnichenko, M. L., Kostrikina, N. A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2002; ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ϵ-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1299–1304.[CrossRef]
    [Google Scholar]
  14. Miroshnichenko, M. L., L'Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E. A., Jeanthon, C. & Stackebrandt, E. ( 2004; ). Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54, 41–45.[CrossRef]
    [Google Scholar]
  15. Nakagawa, S., Inagaki, F., Takai, K., Horikoshi, K. & Sako, Y. ( 2005a; ). Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ϵ-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55, 599–605.[CrossRef]
    [Google Scholar]
  16. Nakagawa, S., Takai, K., Inagaki, F., Horikoshi, K. & Sako, Y. ( 2005b; ). Nitratiruptor tergarcus gen. nov., sp. nov. and Nitratifractor salsuginis gen. nov., sp. nov., nitrate-reducing chemolithoautotrophs of the ϵ-Proteobacteria isolated from a deep-sea hydrothermal system in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55, 925–933.[CrossRef]
    [Google Scholar]
  17. Stolz, J. F., Ellis, D. J., Switzer Blum, J., Ahmann, D., Lovley, D. R. & Oremland, R. S. ( 1999; ). Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ϵ Proteobacteria. Int J Syst Bacteriol 49, 1177–1180.[CrossRef]
    [Google Scholar]
  18. Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004; ). Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ϵ-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54, 2325–2333.[CrossRef]
    [Google Scholar]
  19. Takai, K., Campbell, B. J., Cary, S. C., Suzuki, M., Oida, H., Nunoura, T., Hirayama, H., Nakagawa, S., Suzuki, Y. & other authors ( 2005a; ). Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Environ Microbiol 71, 7310–7320.[CrossRef]
    [Google Scholar]
  20. Takai, K., Hirayama, H., Nakagawa, T., Suzuki, Y., Nealson, K. H. & Horikoshi, K. ( 2005b; ). Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55, 183–189.[CrossRef]
    [Google Scholar]
  21. Takai, K., Suzuki, M., Nakagawa, S., Miyazaki, M., Suzuki, Y., Inagaki, F. & Horikoshi, K. ( 2006; ). Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int J Syst Evol Microbiol 56, 1725–1733.[CrossRef]
    [Google Scholar]
  22. Voordeckers, J. W., Starovoytov, V. & Vetriani, C. ( 2005; ). Caminibacter mediatlanticus sp. nov., a thermophilic, chemolithoautotrophic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. Int J Syst Evol Microbiol 55, 773–779.[CrossRef]
    [Google Scholar]
  23. Widdel, F. ( 1983; ). Methods for enrichment and pure culture isolation of filamentous gliding sulfate-reducing bacteria. Arch Microbiol 134, 282–285.[CrossRef]
    [Google Scholar]
  24. Zhang, C. L., Fouke, B. W., Bonheyo, G. T., Peacock, A. D., White, D. C., Huang, Y. & Romanek, C. S. ( 2004; ). Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): implications for biogeochemical dynamics in hot-spring systems. Geochim Cosmochim Acta 68, 3157–3169.[CrossRef]
    [Google Scholar]
  25. Zhang, C. L., Huang, Z., Cantu, J., Pancost, R. D., Brigmon, R. L., Lyons, T. W. & Sassen, R. ( 2005; ). Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol 71, 2106–2112.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65435-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65435-0
Loading

Data & Media loading...

Supplements

vol. , part 7, pp. 1598 - 1602

Specific growth rate of strain AmH ( sp. nov.) at varying temperatures, pH and NaCl concentrations. [PDF](20 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error