gen. nov., sp. nov. and gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria Free

Abstract

Two novel extremely acidophilic, iron-oxidizing actinobacteria were isolated, one from a mine site in North Wales, UK (isolate T23), and the other from a geothermal site in Yellowstone National Park, Wyoming, USA (Y005). These new actinobacteria belong to the subclass , and in contrast to the only other classified member of the subclass (), both isolates were obligate heterotrophs. The mine site isolate was mesophilic and grew as small rods, while the Yellowstone isolate was a moderate thermophile and grew as long filaments, forming macroscopic flocs in liquid media. Both isolates accelerated the oxidative dissolution of pyrite in yeast extract-amended cultures, but neither was able to oxidize reduced forms of sulfur. Ferrous iron oxidation enhanced growth yields of the novel mesophilic actinobacterium T23, though this was not confirmed for the Yellowstone isolate. Both isolates catalysed the dissimilatory reduction of ferric iron, using glycerol as electron donor, in oxygen-free medium. Based on comparative analyses of base compositions of their chromosomal DNA and of their 16S rRNA gene sequences, the isolates are both distinct from each other and from , and are representatives of two novel genera. The names gen. nov., sp. nov. and gen. nov., sp. nov. are proposed for the mesophilic and moderately thermophilic isolates, respectively, with the respective type strains T23 (=DSM 19497=ATCC BAA-1647) and Y005 (=DSM 19514=ATCC BAA-1645).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65409-0
2009-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/5/1082.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65409-0&mimeType=html&fmt=ahah

References

  1. Alfreider, A., Vogt, C., Hoffman, D. & Babel, W.(2003). Diversity of ribulose 1,5-bisphosphate carboxylase/oxygenase large-subunit genes from groundwater and aquifer microorganisms. Microb Ecol 45, 317–328. [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  3. Bacelar-Nicolau, P. & Johnson, D. B.(1999). Leaching of pyrite by acidophilic heterotrophic iron-oxidizing bacteria in pure and mixed cultures. Appl Environ Microbiol 65, 585–590. [Google Scholar]
  4. Bradford, M. M.(1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef] [Google Scholar]
  5. Brierley, J. A.(1978). Thermophilic iron-oxidizing bacteria found in copper leaching dumps. Appl Environ Microbiol 36, 523–525. [Google Scholar]
  6. Clark, D. A. & Norris, P. R.(1996).Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142, 785–790.[CrossRef] [Google Scholar]
  7. DiSpirito, A. A., Loh, H. T. & Tuovinen, O. H.(1983). A novel method for the isolation of bacterial quinones and its application to appraise the ubiquinone composition of Thiobacillus ferrooxidans. Arch Microbiol 135, 77–80.[CrossRef] [Google Scholar]
  8. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  9. Ghauri, M. A. & Johnson, D. B.(1991). Physiological diversity amongst some moderately thermophilic iron-oxidising bacteria. FEMS Microbiol Ecol 85, 327–334.[CrossRef] [Google Scholar]
  10. Gonzalez-Toril, E., Llobet-Brossa, E., Casamayor, E. O., Amann, R. & Amils, R.(2003). Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69, 4853–4865.[CrossRef] [Google Scholar]
  11. Hallberg, K. B. & Johnson, D. B.(2005). Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci Total Environ 338, 53–66.[CrossRef] [Google Scholar]
  12. Hallberg, K. B., Coupland, K., Kimura, S. & Johnson, D. B.(2006). Macroscopic “acid streamer” growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72, 2022–2030.[CrossRef] [Google Scholar]
  13. Jenkins, D. A. & Johnson, D. B.(1993). Abandoned metal mines: a unique mineralogical and microbiological resource. J Russell Soc 5, 40–44. [Google Scholar]
  14. Johnson, D. B. & Hallberg, K. B.(2007). Techniques for detecting and identifying acidophilic mineral-oxidising microorganisms. In Biomining, pp. 237–261. Edited by D. E. Rawlings & D. B. Johnson. Heidelberg: Springer.
  15. Johnson, D. B. & Roberto, F. F.(1997). Heterotrophic acidophiles and their roles in the bioleaching of sulfide minerals. In Biomining: Theory, Microbes and Industrial Processes, pp. 259–280. Edited by D. E. Rawlings. Berlin, New York: Springer.
  16. Johnson, D. B., Ghauri, M. A. & Said, M. F.(1992). Isolation and characterisation of an acidophilic heterotrophic bacterium capable of oxidizing ferrous iron. Appl Environ Microbiol 58, 1423–1428. [Google Scholar]
  17. Johnson, D. B., Okibe, N. & Roberto, F. F.(2003). Novel thermo-acidophiles isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180, 60–68.[CrossRef] [Google Scholar]
  18. Lovley, D. R. & Phillips, E. J. P.(1987). Rapid assay for microbially reducible ferric iron in aquatic sediments. Appl Environ Microbiol 53, 1536–1540. [Google Scholar]
  19. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  20. Marmur, J. & Doty, P.(1962). Determination of base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  21. Montalvo, N. F., Mohamed, M. N., Enticknap, J. J. & Hill, R. T.(2005). Novel actinobacteria from marine sponges. Antonie van Leeuwenhoek 87, 29–36.[CrossRef] [Google Scholar]
  22. Okibe, N., Gericke, M., Hallberg, K. B. & Johnson, D. B.(2003). Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred tank bioleaching operation. Appl Environ Microbiol 69, 1936–1943.[CrossRef] [Google Scholar]
  23. Schleifer, K. H. & Kandler, O.(1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477. [Google Scholar]
  24. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L.(1997). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef] [Google Scholar]
  25. Wilson, K.(1987). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Green Publishing & Wiley-Interscience.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65409-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65409-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1082–1093

Pyrite oxidation by isolates T23 and Y005 .

Reduction of ferric iron by isolates T23 and Y005 .

[Single PDF](109 KB)



PDF

Most cited Most Cited RSS feed