An aerobic, Gram-negative, motile, non-pigmented bacterium, strain KMM 3042, isolated from a deep-sea brittle star in the Fiji Sea, was subjected to a polyphasic taxonomic study. Phylogenetic analysis based on 16S rRNA gene sequences revealed marine Mn(II)-oxidizing isolate S185-2B as the closest neighbour of strain KMM 3042 (99.9 % sequence similarity). The two strains formed a distinct lineage within the genus adjacent to the members of the cluster, sharing highest sequence similarity of 97.4 and 97.0 %, respectively, with DSM 17834 and DSM 12071. The DNA–DNA hybridization value (71 %) between strains KMM 3042 and S185-2B confirmed their assignment to the same species. On the basis of phylogenetic analysis, DNA–DNA hybridization and physiological and biochemical characterization, strains KMM 3042 and S185-2B should be assigned to a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KMM 3042 (=NRIC 0729 =JCM 14761).


Article metrics loading...

Loading full text...

Full text loading...



  1. Baumann, P., Bowditch, R. D., Baumann, L. & Beaman, B.(1983). Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. Int J Syst Bacteriol 33, 857–865.[CrossRef] [Google Scholar]
  2. Bennasar, A., Rosselló-Mora, R., Lalucat, J. & Moore, E. R. B.(1996). 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 46, 200–205.[CrossRef] [Google Scholar]
  3. Bligh, E. G. & Dyer, W. J.(1959). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911–917.[CrossRef] [Google Scholar]
  4. Euzéby, J. P.(2005).Pseudomonas aguilliseptica. In Dictionnaire de Bactériologie Vétérinaire. http://www.bacterio.cict.fr/bacdico/pp/anguilliseptica.html (in French).
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  6. Felsenstein, J.(1993).phylip (phylogeny inference package) version 3.5.1. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  7. Francis, C. A. & Tebo, B. M.(2001).cumA multicopper oxidase genes from diverse Mn(II)-oxidizing and non-Mn(II)-oxidizing Pseudomonas strains. Appl Environ Microbiol 67, 4272–4278.[CrossRef] [Google Scholar]
  8. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  9. Hildebrand, D. C., Palleroni, N. J., Hendson, M., Toth, J. & Johnson, J. L.(1994).Pseudomonas flavescens sp. nov., isolated from walnut blight cankers. Int J Syst Bacteriol 44, 410–415.[CrossRef] [Google Scholar]
  10. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  11. King, E. O., Ward, M. K. & Rainey, D. E.(1954). Two simple media for demonstration of pyocyanin and fluorescein. J Lab Clin Med 44, 301–307. [Google Scholar]
  12. Leifson, E.(1963). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184. [Google Scholar]
  13. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  14. Owen, R. J., Hill, L. R. & Lapage, S. P.(1969). Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7, 503–516.[CrossRef] [Google Scholar]
  15. Palleroni, N. J.(1984). Genus I. Pseudomonas Migula 1984, 237AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 141–199. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  16. Pearson, W. R. & Lipman, D. J.(1988). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef] [Google Scholar]
  17. Peix, A., Berge, O., Rivas, R., Abril, A. & Velázquez, E.(2005).Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Córdoba, Argentina. Int J Syst Evol Microbiol 55, 1107–1112.[CrossRef] [Google Scholar]
  18. Romanenko, L. A., Uchino, M., Falsen, E., Frolova, G. M., Zhukova, N. V. & Mikhailov, V. V.(2005a).Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 55, 919–924.[CrossRef] [Google Scholar]
  19. Romanenko, L. A., Uchino, M., Falsen, E., Lysenko, A. M., Zhukova, N. V. & Mikhailov, V. V.(2005b).Pseudomonas xanthomarina sp. nov., a novel bacterium isolated from marine ascidian. J Gen Appl Microbiol 51, 65–71.[CrossRef] [Google Scholar]
  20. Rosselló-Mora, R. A., García-Valdés, E. & Lalucat, J.(1993). Taxonomic relationship between Pseudomonas perfectomarina ZoBell and Pseudomonas stutzeri. Int J Syst Bacteriol 43, 852–854.[CrossRef] [Google Scholar]
  21. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  22. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K.(1997). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef] [Google Scholar]
  23. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–655. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  25. Uchino, M., Kosako, Y., Uchimura, T. & Komagata, K.(2000). Emendation of Pseudomonas straminea Iizuka and Komagata 1963. Int J Syst Evol Microbiol 50, 1513–1519.[CrossRef] [Google Scholar]
  26. Uchino, M., Shida, O., Uchimura, T. & Komagata, K.(2001). Recharacterization of Pseudomonas fulva Iizuka and Komagata 1963, and proposals of Pseudomonas parafulva sp. nov. and Pseudomonas cremoricolorata sp. nov. J Gen Appl Microbiol 47, 247–261.[CrossRef] [Google Scholar]
  27. Vanparys, B., Heylen, K., Lebbe, L. & De Vos, P.(2006).Pseudomonas peli sp. nov. and Pseudomonas borbori sp. nov., isolated from a nitrifying inoculum. Int J Syst Evol Microbiol 56, 1875–1881.[CrossRef] [Google Scholar]
  28. Vaskovsky, V. E. & Terekhova, T. A.(1979). HPTLC of phospholipid mixtures containing phosphatidylglycerol. J High Resolut Chromatogr Chromatogr Commun 2, 671–672.[CrossRef] [Google Scholar]
  29. Wakabayashi, H. & Egusa, S.(1972). Characteristics of a Pseudomonas sp. from an epizootic of pond-cultured eels (Anguilla japonica). Bull Jpn Soc Sci Fish 38, 577–587.[CrossRef] [Google Scholar]
  30. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  31. Wilkinson, S. G.(1988). Gram-negative bacteria. In Microbial Lipids, vol. I, pp. 299–488. Edited by C. Ratledge & S. G. Wilkinson. London: Academic Press.
  32. Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y., Suemori, A., Nakajima, K., Inoue, N. & Kawasaki, K.(2001).Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51, 349–355. [Google Scholar]

Data & Media loading...


Maximum-likelihood tree based on 16S rRNA gene sequences showing relationships of isolate KMM 3042 and S185-2B and species. [PDF](16 KB)


Two-dimensional thin-layer chromatograms of polar lipids of strain KMM 3042 (a) and S185-2B (b). PE, Phosphatidylethanolamine; PG, phosphatidylglycerol; DPG, diphosphatidylglycerol; APL, aminophospholipid; AL, aminolipid.


Fatty acid compositions (%) of strains KMM 3042 and SI85-2B and type strains of related species. [PDF](58 KB)


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error