1887

Abstract

Nine strains capable of metabolizing isoflavones to equol were isolated from human faeces. Four of the strains were characterized by determining phenotypic and biochemical features and their phylogenetic position based on 16S rRNA gene sequence analysis. These strains were related to HKU14 with about 93 % 16S rRNA gene sequence similarity; they were asaccharolytic, obligately anaerobic, non-spore-forming, non-motile and Gram-positive coccobacilli. In enzyme activity tests, arginine dihydrolase, arginine and leucine arylamidases were positive but nitrate reduction, urease and -glucosidase were negative. The major menaquinone was DMMK-6 (dimethylmenaquinone-6), while that of members of the genus was MMK-6 (methylmenaquinone-6). Furthermore, the cell-wall peptidoglycan type of these strains was A1, while that of members of the genus was A4. On the basis of these data, a new genus, gen. nov., is proposed with one species, sp. nov. The type strain of is FJC-B9 (=JCM 14793 =DSM 19450 =CCUG 54925).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65404-0
2008-05-01
2024-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/5/1221.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65404-0&mimeType=html&fmt=ahah

References

  1. Anderson, R. C., Rasmussen, M. A., Jensen, N. S. & Allison, M. J.(2000).Denitrobacterium detoxificans gen. nov., sp. nov., a ruminal bacterium that respires on nitrocompounds. Int J Syst Evol Microbiol 50, 633–638.[CrossRef] [Google Scholar]
  2. Arai, Y., Uehara, M., Sato, Y., Kimira, M., Eboshida, A., Adlercreutz, H. & Watanabe, S.(2000). Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol 10, 127–135.[CrossRef] [Google Scholar]
  3. Chang, Y. C. & Nair, M. G.(1995). Metabolism of daidzein and genistein by intestinal bacteria. J Nat Prod 58, 1892–1896.[CrossRef] [Google Scholar]
  4. Collins, M. D. & Wallbanks, S.(1992). Comparative sequence analyses of the 16S rRNA genes of Lactobacillus minutus, Lactobacillus rimae and Streptococcus parvulus: proposal for the creation of a new genus Atopobium. FEMS Microbiol Lett 74, 235–240. [Google Scholar]
  5. Dauga, C.(2002). Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies. Int J Syst Evol Microbiol 52, 531–547. [Google Scholar]
  6. Day, A. J., Cañada, F. J., Díaz, J. C., Kroon, P. A., McLauchlan, R., Faulds, C. B., Plumb, G. W., Morgan, M. R. & Williamson, G.(2000). Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468, 166–170.[CrossRef] [Google Scholar]
  7. Dewhirst, F. E., Paster, B. J., Tzellas, N., Coleman, B., Downes, J., Spratt, D. A. & Wade, W. G.(2001). Characterization of novel human oral isolates and cloned 16S rDNA sequences that fall in the family Coriobacteriaceae: description of Olsenella gen. nov., reclassification of Lactobacillus uli as Olsenella uli comb. nov. and description of Olsenella profusa sp. nov. Int J Syst Evol Microbiol 51, 1797–1804.[CrossRef] [Google Scholar]
  8. Einarsson, S., Josefsson, B., Möller, P. & Sanchez, D.(1987). Separation of amino acid enantiomers and chiral amines using precolumn derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate and reversed-phase liquid chromatography. Anal Chem 59, 1191–1195.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1985). Confidence limits of phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  10. Fernandez, F. & Collins, M. D.(1987). Vitamin K composition of anaerobic gut bacteria. FEMS Microbiol Lett 41, 175–180.[CrossRef] [Google Scholar]
  11. Haas, F. & König, H.(1988).Coriobacterium glomerans gen. nov., sp. nov. from the intestinal tract of the red soldier bug. Int J Syst Bacteriol 38, 382–384.[CrossRef] [Google Scholar]
  12. Holdeman, L. V., Cato, E. P. & Moore, W. E. C.(1977).Anaerobe Laboratory Manual, 4th edn. Blacksburg, VA: Virginia Polytechnic Institute and State University.
  13. Joannou, G. E., Kelly, G. E., Reeder, A. Y., Waring, M. & Nelson, C.(1995). A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavonoids. J Steroid Biochem Mol Biol 54, 167–184.[CrossRef] [Google Scholar]
  14. Kageyama, A., Benno, Y. & Nakase, T.(1999a). Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. Int J Syst Bacteriol 49, 557–565.[CrossRef] [Google Scholar]
  15. Kageyama, A., Benno, Y. & Nakase, T.(1999b). Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 1725–1732.[CrossRef] [Google Scholar]
  16. Kawamoto, I., Oka, T. & Nara, T.(1981). Cell wall composition of Micromonospora olivoasterospora, Micromonospora sagamiensis, and related organisms. J Bacteriol 146, 527–534. [Google Scholar]
  17. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  18. Komagata, K. & Suzuki, K.(1987). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207. [Google Scholar]
  19. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E.(1988). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef] [Google Scholar]
  20. Lau, S. K. P., Woo, P. C. Y., Woo, G. K. S., Fung, A. M. Y., Wong, M. K. M., Chan, K., Tam, D. M. W. & Yuen, K.(2004).Eggerthella hongkongensis sp. nov. and Eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. Diagn Microbiol Infect Dis 49, 255–263.[CrossRef] [Google Scholar]
  21. Maddison, D. R. & Maddison, W. P.(2002). MacClade 4: analysis of phylogeny and character evolution, version 4.0. Sunderland, MA: Sinauer Associates.
  22. Miller, L. T.(1982). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586. [Google Scholar]
  23. Minamida, K., Tanaka, M., Abe, A., Sone, T., Tomita, F., Hara, H. & Asano, K.(2006). Production of equol from daidzein by gram-positive rod-shaped bacterium isolated from rat intestine. J Biosci Bioeng 102, 247–250.[CrossRef] [Google Scholar]
  24. Moore, W. E. C., Cato, E. P. & Holdeman, L. V.(1971).Eubacterium lentum (Eggerth) Prévot 1938: emendation of description and designation of the neotype strain. Int J Syst Bacteriol 21, 299–303.[CrossRef] [Google Scholar]
  25. Nakazawa, F., Poco, S. E., Ikeda, T., Sato, M., Kalfas, S., Sundqvist, G. & Hoshino, E.(1999).Cryptobacterium curtum gen. nov., sp. nov., a new genus of Gram-positive anaerobic rod isolated from human oral cavities. Int J Syst Bacteriol 49, 1193–1200.[CrossRef] [Google Scholar]
  26. Saito, H. & Miura, K.(1963). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 619–629.[CrossRef] [Google Scholar]
  27. Sakamoto, M., Suzuki, M., Umeda, M., Ishikawa, I. & Benno, Y.(2002). Reclassification of Bacteroides forsythus (Tanner et al. 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov. Int J Syst Evol Microbiol 52, 841–849.[CrossRef] [Google Scholar]
  28. Sathyamoorthy, N. & Wang, T. T.(1997). Differential effects of dietary phyto-oestrogens daidzein and equol on human breast cancer MCF-7 cells. Eur J Cancer 33, 2384–2389.[CrossRef] [Google Scholar]
  29. Schmitt, E., Dekant, W. & Stopper, H.(2001). Assaying the estrogenicity of phytoestrogens in cells of different estrogen sensitive tissues. Toxicol In Vitro 15, 433–439.[CrossRef] [Google Scholar]
  30. Setchell, K. D., Brown, N. M., Zimmer-Nechemias, L., Brashear, W. T., Wolfe, B. E., Kirschner, A. S. & Heubi, J. E.(2002). Evidence for lack of absorption of soy isoflavone glycosides in humans, supporting the crucial role of intestinal metabolism for bioavailability. Am J Clin Nutr 76, 447–453. [Google Scholar]
  31. Setchell, K. D., Brown, N. M., Desai, P. B., Zimmer-Nechimias, L., Wolfe, B., Jakate, A. S., Creutzinger, V. & Heubi, J. E.(2003). Bioavailability, disposition, and dose-response effects of soy isoflavones when consumed by healthy women at physiologically typical dietary intakes. J Nutr 133, 1027–1035. [Google Scholar]
  32. Staneck, J. L. & Roberts, G. D.(1974). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28, 226–231. [Google Scholar]
  33. Swofford, D. L.(2000).paup – Phylogenetic Analysis Using Parsimony and other methods, version 4. Sunderland, MA: Sinauer Associates.
  34. Tamaoka, J. & Komagata, K.(1984). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef] [Google Scholar]
  35. Tamura, K., Dudley, J., Nei, M. & Kumar, S.(2007).mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24, 1596–1599.[CrossRef] [Google Scholar]
  36. Wade, W. G., Downes, J., Dymock, D., Hiom, S. J., Weightman, A. J., Dewhirst, F. E., Paster, B. J., Tzellas, N. & Coleman, B.(1999). The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. Int J Syst Bacteriol 49, 595–600.[CrossRef] [Google Scholar]
  37. Wang, X.-L., Hur, H.-G., Lee, J. H., Kim, K. T. & Kim, S.-I.(2005). Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl Environ Microbiol 71, 214–219.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.65404-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65404-0
Loading

Data & Media loading...

Supplements

Minimum-evolution (Fig. S1) and maximum-parsimony (Fig. S2) trees showing the positions of the isolated strains among representative members of the family . [PDF](21 KB)

PDF

[PDF file of Supplementary Tables S1 and S2](20 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error