1887

Abstract

A novel halophilic archaeon, strain BZ256, was isolated from Zodletone Spring, a sulfide- and sulfur-rich spring in south-western Oklahoma, USA. Cells were non-motile, non-flagellated cocci that divided along two axes, resulting in the formation of sarcina-like clusters. Strain BZ256 grew at salt concentrations ranging from 1.3 to 4.3 M NaCl, with optimum growth at approximately 3.4 M, and required at least 1 mM Mg for growth. The pH range for growth was 5.0 to at least 8.5, and the temperature range for growth was 25–45 °C. The two diether phospholipids that are typical of members of the order , namely phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester, were present in strain BZ256, as were two glycolipids chromatographically identical to S-DGD-1 and DGD-1. The 16S rRNA gene sequence of strain BZ256 showed 96.8 % similarity to that of the type strain of , the closest recognized species within the order . The DNA G+C content of strain BZ256 was 65.4 mol%. Microscopic, physiological, biochemical and phylogenetic comparisons between strain BZ256 and recognized genera of extremely halophilic archaea suggest that this strain represents a member of a novel genus and species within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is BZ256 (=KCTC 4017 =JCM 14848).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65398-0
2008-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/4/856.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65398-0&mimeType=html&fmt=ahah

References

  1. Baker, G. C., Smith, J. J. & Cowan, D. A. ( 2003; ). Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55, 541–555.[CrossRef]
    [Google Scholar]
  2. Balch, W. E. & Wolfe, R. S. ( 1976; ). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32, 781–791.
    [Google Scholar]
  3. Bardavid, R. E., Mana, L. & Oren, A. ( 2007; ). Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea–Red Sea water mixtures in experimental outdoor ponds. Int J Syst Evol Microbiol 57, 780–783.[CrossRef]
    [Google Scholar]
  4. Bryant, M. P. ( 1972; ). Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr 25, 1324–1328.
    [Google Scholar]
  5. Burns, D. G., Janssen, P. H., Itoh, T., Kamekura, M., Li, Z., Jensen, G., Rodriguez-Valera, F., Bolhuis, H. & Dyall-Smith, M. L. ( 2007; ). Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57, 387–392.[CrossRef]
    [Google Scholar]
  6. Castillo, A. M., Gutiérrez, M. C., Kamekura, M., Ma, Y., Cowan, D. A., Jones, B. E., Grant, W. D. & Ventosa, A. ( 2006a; ). Halovivax asiaticus gen. nov., sp. nov., a novel extremely halophilic archaeon isolated from Inner Mongolia, China. Int J Syst Evol Microbiol 56, 765–770.[CrossRef]
    [Google Scholar]
  7. Castillo, A. M., Gutiérrez, M. C., Kamekura, M., Xue, Y., Ma, Y., Cowan, D. A., Jones, B. E., Grant, W. D. & Ventosa, A. ( 2006b; ). Halostagnicola larsenii gen. nov., sp. nov., an extremely halophilic archaeon from a saline lake in Inner Mongolia, China. Int J Syst Evol Microbiol 56, 1519–1524.[CrossRef]
    [Google Scholar]
  8. Castillo, A. M., Gutiérrez, M. C., Kamekura, M., Xue, Y., Ma, Y., Cowan, D. A., Jones, B. E., Grant, W. D. & Ventosa, A. ( 2006c; ). Halorubrum orientale sp. nov., a halophilic archaeon isolated from Lake Ejinor, Inner Mongolia, China. Int J Syst Evol Microbiol 56, 2559–2563.[CrossRef]
    [Google Scholar]
  9. Cui, H. L., Tohty, D., Zhou, P. J. & Liu, S. J. ( 2006; ). Halorubrum lipolyticum sp. nov. and Halorubrum aidingense sp. nov., isolated from two salt lakes in Xin-Jiang, China. Int J Syst Evol Microbiol 56, 1631–1634.[CrossRef]
    [Google Scholar]
  10. Dussault, H. P. ( 1955; ). An improved technique for staining red halophilic bacteria. J Bacteriol 70, 484–485.
    [Google Scholar]
  11. Elshahed, M. S., Savage, K. N., Oren, A., Gutierrez, M. C., Ventosa, A. & Krumholz, L. R. ( 2004a; ). Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. Int J Syst Evol Microbiol 54, 2275–2279.[CrossRef]
    [Google Scholar]
  12. Elshahed, M. S., Najar, F. Z., Roe, B. A., Oren, A., Dewers, T. A. & Krumholz, L. R. ( 2004b; ). Survey of archaeal diversity reveals an abundance of halophilic Archaea in a low-salt, sulfide- and sulfur-rich spring. Appl Environ Microbiol 70, 2230–2239.[CrossRef]
    [Google Scholar]
  13. Fukushima, T., Usami, R. & Kamekura, M. ( 2007; ). A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5 % salt solution. Saline Systems 3, 2 [CrossRef]
    [Google Scholar]
  14. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  15. Goh, F., Leuko, S., Allen, M. A., Bowman, J. P., Kamekura, M., Neilan, B. A. & Burns, B. P. ( 2006; ). Halococcus hamelinensis sp. nov., a novel halophilic archaeon isolated from stromatolites in Shark Bay, Australia. Int J Syst Evol Microbiol 56, 1323–1329.[CrossRef]
    [Google Scholar]
  16. Grant, W. D., Kamekura, M., McGenity, T. J. & Ventosa, A. ( 2001; ). Order Halobacteriales. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 294–334. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  17. Montalvo-Rodriguez, R., Vreeland, R. H., Oren, A., Kessel, M., Betancourt, C. & Lopez-Garriga, J. ( 1998; ). Halogeometricum borinquense gen. nov., sp. nov., a novel halophilic archaeon from Puerto Rico. Int J Syst Bacteriol 48, 1305–1312.[CrossRef]
    [Google Scholar]
  18. Munson, M. A., Nedwell, D. B. & Embley, T. M. ( 1997; ). Phylogenetic diversity of Archaea in sediment samples from a coastal salt marsh. Appl Environ Microbiol 63, 4729–4733.
    [Google Scholar]
  19. Oren, A. ( 1994; ). The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13, 415–440.[CrossRef]
    [Google Scholar]
  20. Oren, A., Gurevich, P., Gemmell, R. T. & Teske, A. ( 1995; ). Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45, 747–754.[CrossRef]
    [Google Scholar]
  21. Oren, A., Duker, S. & Ritter, S. ( 1996; ). The polar lipid composition of Walsby's square bacterium. FEMS Microbiol Lett 138, 135–140.[CrossRef]
    [Google Scholar]
  22. Oren, A., Ventosa, A. & Grant, W. D. ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales. Int J Syst Bacteriol 47, 233–238.[CrossRef]
    [Google Scholar]
  23. Purdy, K. J., Cresswell-Maynard, T. D., Nedwell, D. B., McGenity, T. J., Grant, W. D., Timmis, K. N. & Embley, T. M. ( 2004; ). Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6, 591–595.[CrossRef]
    [Google Scholar]
  24. Savage, K. N., Krumholz, L. R., Oren, A. & Elshahed, M. S. ( 2007; ). Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57, 19–24.[CrossRef]
    [Google Scholar]
  25. Tajima, K., Nagamine, T., Matsui, H., Nakamura, M. & Aminov, R. I. ( 2001; ). Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 200, 67–72.[CrossRef]
    [Google Scholar]
  26. Takai, K., Komatsu, T., Inagaki, F. & Horikoshi, K. ( 2001; ). Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67, 3618–3629.[CrossRef]
    [Google Scholar]
  27. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  28. Wais, A. C. ( 1985; ). Cellular morphogenesis in a halophilic archaebacterium. Curr Microbiol 12, 191–196.[CrossRef]
    [Google Scholar]
  29. Walsh, D. A., Papke, R. T. & Doolittle, W. F. ( 2005; ). Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7, 1655–1666.[CrossRef]
    [Google Scholar]
  30. Widdel, F. ( 2006; ). The genus Desulfotomaculum. In The Prokaryotes: a Handbook on the Biology of Bacteria, 3rd edn, vol. 4, pp. 787–794. Edited by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer & E. Stackebrandt. New York: Springer.
  31. Xu, X. W., Wu, Y.-H., Wang, C. S., Oren, A., Zhou, P.-J. & Wu, M. ( 2007; ). Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. Int J Syst Evol Microbiol 57, 717–720.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65398-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65398-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 856 - 860

Analysis of the lipid composition of strain BZ256 using TLC. (a) One-dimensional TLC stained with orcinol reagent. Lanes: 1, R1; 2, strain; 3, strain; 4, strain; 5, PR 3 ; 6 and 7, DX253 ; 8, strain BZ256 . (b) Two-dimensional TLC stained for phospholipids, showing the presence of phosphatidylglycerol (PG) and phosphatidylglycerol phosphate methyl ester (Me-PGP) in strain BZ256 and the absence of phosphatidylglycerol sulfate. (c) Two-dimensional TLC stained with α-naphthol-sulfuric acid, showing the presence of two glycolipids in strain BZ256 .



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error