1887

Abstract

A novel methane-producing archaeon, strain NOBI-1 was isolated from an anaerobic, propionate-degradation enrichment culture, which was originally obtained from a mesophilic methanogenic sludge digesting municipal sewage sludge. Cells were non-motile, rod-shaped, 0.7–1.0 μm by 2.0 μm, and formed multicellular filaments longer than 8 μm. Growth was observed between 35 and 55 °C (optimum 50 °C) and pH 6.7 and 8.0 (optimum pH 7.0). The G+C content of the genomic DNA was 56.3 mol%. The strain utilized H and formate for growth and methane production. Based on comparative sequence analyses of the 16S rRNA gene and gene (encoding the alpha subunit of methyl-coenzyme M reductase, a key enzyme in the methane-production pathway), strain NOBI-1 was affiliated with the order , but it was significantly distant from any other known species within the order. The most closely related species based on 16S rRNA and gene sequence similarity were respectively ‘ Methanoregula boonei’ (93.7 % 16S rRNA gene sequence similarity) and (74.2 % deduced McrA amino acid sequence similarity to the type strain). These phenotypic and genetic properties justified the creation of a novel species of a new genus for the strain, for which we propose the name gen. nov., sp. nov. The type strain of is strain NOBI-1 (=DSM 16494 =JCM 12467 =NBRC 102358).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65394-0
2008-01-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/1/294.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65394-0&mimeType=html&fmt=ahah

References

  1. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R. & Stahl, D. A. ( 1990; ). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56, 1919–1925.
    [Google Scholar]
  2. Anderson, K., Sallis, P. & Uyanik, S. ( 2003; ). Anaerobic treatment processes. In Handbook of Water and Wastewater Microbiology, pp. 391–426. Edited by D. Mara & N. Horan. London: Academic Press.
  3. Asakawa, S. & Nagaoka, K. ( 2003; ). Methanoculleus bourgensis, Methanoculleus olentangyi and Methanoculleus oldenburgensis are subjective synonyms. Int J Syst Evol Microbiol 53, 1551–1552.[CrossRef]
    [Google Scholar]
  4. Boone, D. R. & Whitman, W. B. ( 1988; ). Proposal of minimal standards for describing new taxa of methanogenic bacteria. Int J Syst Bacteriol 38, 212–219.[CrossRef]
    [Google Scholar]
  5. Boone, D. R., Whitman, W. B. & Rouviére, P. ( 1993; ). Diversity and taxonomy of methanogens. In Methanogenesis, pp. 35–80. Edited by J. G. Ferry. New York: Chapman & Hall.
  6. Bräuer, S. L., Cadillo-Quiroz, H., Yashiro, E., Yavitt, J. B. & Zinder, S. H. ( 2006; ). Isolation of a novel acidiphilic methanogen from an acidic peat bog. Nature 442, 192–194.[CrossRef]
    [Google Scholar]
  7. Chouari, R., Le Paslier, D., Daegelen, P., Ginestet, P., Weissenbach, J. & Sghir, A. ( 2005; ). Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7, 1104–1115.[CrossRef]
    [Google Scholar]
  8. Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. ( 1999; ). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22, 434–444.[CrossRef]
    [Google Scholar]
  9. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  10. Doetsch, R. N. ( 1981; ). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, N. R. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  11. Ferry, J. G., Smith, P. H. & Wolf, R. S. ( 1974; ). Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatei sp. nov. Int J Syst Bacteriol 24, 465–469.[CrossRef]
    [Google Scholar]
  12. Garcia, J. L., Patel, B. K. & Ollivier, B. ( 2000; ). Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6, 205–226.[CrossRef]
    [Google Scholar]
  13. Garrity, G. M. & Holt, J. G. ( 2001; ). Phylum AII. Euryarchaeota phy. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, p. 211. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  14. Großkopf, R., Janssen, P. H. & Liesack, W. ( 1998; ). Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64, 960–969.
    [Google Scholar]
  15. Hales, B. A., Edwards, C., Ritchie, D. A., Hall, G., Pickup, R. W. & Saunders, J. R. ( 1996; ). Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62, 668–675.
    [Google Scholar]
  16. Harmsen, H. J., Van Kuijk, B. L., Plugge, C. M., Akkermans, A. D., De Vos, W. M. & Stams, A. J. ( 1998; ). Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48, 1383–1387.[CrossRef]
    [Google Scholar]
  17. Hatamoto, M., Imachi, H., Ohashi, A. & Harada, H. ( 2007; ). Identification and cultivation of anaerobic, syntrophic long-chain fatty acid degrading microbes from mesophilic and thermophilic methanogenic sludges. Appl Environ Microbiol 73, 1332–1340.[CrossRef]
    [Google Scholar]
  18. Hattori, S., Kamagata, Y., Hanada, S. & Shoun, H. ( 2000; ). Thermacetogenium phaeum gen. nov., sp. nov., a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50, 1601–1609.[CrossRef]
    [Google Scholar]
  19. Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. & Harada, H. ( 2000; ). Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66, 3608–3615.[CrossRef]
    [Google Scholar]
  20. Imachi, H., Sekiguchi, Y., Kamagata, Y., Hanada, S., Ohashi, A. & Harada, H. ( 2002; ). Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing bacterium. Int J Syst Evol Microbiol 52, 1729–1735.[CrossRef]
    [Google Scholar]
  21. Imachi, H., Sekiguchi, Y., Kamagata, Y., Loy, A., Qiu, Y.-L., Hugenholtz, P., Kimura, N., Wagner, M., Ohashi, A. & Harada, H. ( 2006; ). Non-sulfate-reducing, syntrophic bacteria affiliated with Desulfotomaculum cluster I are widely distributed in methanogenic environments. Appl Environ Microbiol 72, 2080–2091.[CrossRef]
    [Google Scholar]
  22. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian protein metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  23. Kamagata, Y. & Mikami, E. ( 1991; ). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef]
    [Google Scholar]
  24. Lane, D. J. ( 1991; ). 16S /23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  25. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  26. Maestrojuán, G. M., Boone, D. R., Xun, L., Mah, R. A. & Zhang, L. ( 1990; ). Transfer of Methanogenium bourgense, Methanogenium marisnigri, Methanogenium olentangyi, and Methanogenium thermophilicum to the genus Methanoculleus gen. nov., emendation of new strains of Methanoculleus bourgense and Methanoculleus marisnigri. Int J Syst Bacteriol 40, 117–122.[CrossRef]
    [Google Scholar]
  27. Ollivier, B. M., Mah, R. A., Garcia, J. L. & Robinson, R. ( 1985; ). Isolation and characterization of Methanogenium aggregans sp. nov. Int J Syst Bacteriol 35, 127–130.[CrossRef]
    [Google Scholar]
  28. Paynter, M. J. B. & Hungate, R. E. ( 1968; ). Characterization of Methanobacterium mobilis, sp.n., isolated from the bovine rumen. J Bacteriol 95, 1943–1951.
    [Google Scholar]
  29. Romesser, J. A., Wolfe, R. S., Mayer, F., Spiess, E. & Walther-Mauruschat, A. ( 1979; ). Methanogenium, a new genus of marine methanogenic bacteria, and characterization of Methanogenium cariaci sp. nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121, 147–153.[CrossRef]
    [Google Scholar]
  30. Rouviére, P., Mandelco, L., Winker, S. & Woese, C. R. ( 1992; ). A detailed phylogeny for the Methanomicrobiales. Syst Appl Microbiol 15, 363–371.[CrossRef]
    [Google Scholar]
  31. Sakai, S., Imachi, H., Sekiguchi, Y., Ohashi, A., Harada, H. & Kamagata, Y. ( 2007; ). Isolation of key methanogens for global methane emission from rice paddy field: a novel isolate affiliated with a clone cluster, the Rice Cluster I. Appl Environ Microbiol 73, 4326–4331.[CrossRef]
    [Google Scholar]
  32. Sekiguchi, Y. ( 2006; ). Yet-to-be cultured microorganisms relevant to methane fermentation processes. Microbes Environ 21, 1–15.[CrossRef]
    [Google Scholar]
  33. Sekiguchi, Y. & Kamagata, Y. ( 2004; ). Microbial community structure and functions in methane fermentation technology for wastewater treatment. In Strict and Facultative Anaerobes: Medical and Environmental Aspects, pp. 361–384. Edited by M. M. Nakano & P. Zuber. Wymondham, UK: Horizon Bioscience.
  34. Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H. & Nakamura, K. ( 1998; ). Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144, 2655–2665.[CrossRef]
    [Google Scholar]
  35. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. ( 2000; ). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50, 771–779.[CrossRef]
    [Google Scholar]
  36. Sekiguchi, Y., Imachi, H., Susilorukmi, A., Muramatsu, M., Ohashi, A., Harada, H., Hanada, S. & Kamagata, Y. ( 2006; ). Tepidanaerobacter syntrophicus gen. nov., sp. nov., an anaerobic, moderately thermophilic, syntrophic alcohol- and lactate-degrading bacterium isolated from thermophilic digested sludges. Int J Syst Evol Microbiol 56, 1621–1629.[CrossRef]
    [Google Scholar]
  37. Shigematsu, T., Tang, Y., Kobayashi, T., Kawaguchi, H., Morimura, S. & Kida, K. ( 2004; ). Effect of dilution rate on metabolic pathway shift between aceticlastic and nonaceticlastic methanogenesis in chemostat cultivation. Appl Environ Microbiol 70, 4048–4052.[CrossRef]
    [Google Scholar]
  38. Spring, S., Schumann, P. & Spröer, C. ( 2005; ). Methanogenium frittonii Harris et al. 1996 is a later synonym of Methanoculleus thermophilus (Rivard and Smith 1982) Maestrojuán et al. 1990. Int J Syst Evol Microbiol 55, 1097–1099.[CrossRef]
    [Google Scholar]
  39. Stubner, S. ( 2002; ). Enumeration of 16S rDNA of Desulfotomaculum lineage I in rice field soil by real-time PCR with SybrGreenTM detection. J Microbiol Methods 50, 155–164.[CrossRef]
    [Google Scholar]
  40. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  41. Wildgruber, G., Thomm, M., König, H., Ober, K., Ricchiuto, T. & Stetter, K. O. ( 1982; ). Methanoplanus limicola, a plate-shaped methanogen representing a novel family, the Methanoplanaceae. Arch Microbiol 132, 31–36.[CrossRef]
    [Google Scholar]
  42. Zabel, H. P., König, H. & Winter, J. ( 1984; ). Isolation and characterization of a new coccoid methanogen, Methanogenium tatii, spec. nov. from a solfataric field on Mount Tatio. Arch Microbiol 137, 308–315.[CrossRef]
    [Google Scholar]
  43. Zellner, G., Alten, C., Stackebrandt, E., Conway de Macario, E. & Winter, J. ( 1987; ). Isolation and characterization of Methanocorpusculum parvum, gen. nov., spec. nov., a new tungsten requiring, coccoid methanogen. Arch Microbiol 147, 13–20.[CrossRef]
    [Google Scholar]
  44. Zellner, G., Messner, P., Kneifel, H., Tindall, B. J., Winter, J. & Stackebrandt, E. ( 1989; ). Methanolacinia gen. nov., incorporating Methanomicrobium paynteri as Methanolacinia paynteri comb. nov. J Gen Appl Microbiol 35, 185–202.[CrossRef]
    [Google Scholar]
  45. Zellner, G., Boone, D. R., Keswani, J., Whitman, W. B., Woese, C. R., Hagelstein, A., Tindall, B. J. & Stackebrandt, E. ( 1999; ). Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen. nov., comb. nov. and Methanofollis liminatans comb. nov. and description of a new strain of Methanofollis liminatans. Int J Syst Bacteriol 49, 247–255.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65394-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65394-0
Loading

Data & Media loading...

[PDF file of Supplementary Tables S1 and S2](17 KB)

PDF

Methane production from H by strain NOBI-1 . [PDF](169 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error