sp. nov., from a bryozoan in the Adriatic Sea Free

Abstract

A rod-shaped, translucent yellow-pigmented, Gram-negative bacterium, strain B390, was isolated from the bryozoan collected in the Adriatic Sea, near Rovinj, Croatia. 16S rRNA gene sequence analysis indicated affiliation to the genus , with sequence similarity levels of 94.8–97.3 % to type strains of species with validly published names. It grew at 5–34 °C, with optimal growth at 18–26 °C, and only in the presence of NaCl or sea salts. In contrast to other type strains of the genus, strain B390 was able to hydrolyse aesculin. The predominant menaquinone was MK-6 and major fatty acids were iso-C, iso-C 3-OH and iso-C. The DNA G+C content was 31.6 mol%. DNA–DNA hybridization and comparative physiological tests were performed with type strains JCM 13491 and DSM 16505, since they exhibit 16S rRNA gene sequence similarities above 97 %. These data, as well as phylogenetic analyses, suggest that strain B390 (=DSM 18961 =JCM 14633) should be classified as the type strain of a novel species within the genus , for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65383-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/3/542.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65383-0&mimeType=html&fmt=ahah

References

  1. Bernardet, J.-F., Nakagawa, Y. & Holmes, B.(2002). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52, 1049–1070.[CrossRef] [Google Scholar]
  2. Bowman, J. P.(2000). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50, 1861–1868. [Google Scholar]
  3. Bruns, A., Rohde, M. & Berthe-Corti, L.(2001).Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef] [Google Scholar]
  4. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M.(1977). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef] [Google Scholar]
  5. Choi, D. H., Kim, Y.-G., Hwang, C. Y., Yi, H. & Chun, J.(2006).Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 56, 635–664.[CrossRef] [Google Scholar]
  6. Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A. S., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M. & Tiedje, J. M.(2007). The Ribosomal Database Project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35 (Database issue), D169–D172.[CrossRef] [Google Scholar]
  7. Cowan, S. T. & Steel, K. J.(1965).Manual for the Identification of Medical Bacteria. Cambridge: Cambridge University Press.
  8. De Ley, J., Cattoir, H. & Reynaerts, A.(1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef] [Google Scholar]
  9. Frette, L., Jørgensen, N. O. G., Irming, H. & Kroer, N.(2004).Tenacibaculum skagerrakense sp. nov., a marine bacterium isolated from the pelagic zone in Skagerrak, Denmark. Int J Syst Evol Microbiol 54, 519–524.[CrossRef] [Google Scholar]
  10. Gregersen, T.(1978). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5, 123–127.[CrossRef] [Google Scholar]
  11. Guindon, S., Lethiec, F., Duroux, P. & Gascuel, O.(2005).phyml Online – a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33 (Web Server Issue), W557–W559.[CrossRef] [Google Scholar]
  12. Hansen, G. H., Bergh, Ø., Michaelsen, J. & Knappskog, D.(1992).Flexibacter ovolyticus sp. nov., a pathogen of eggs and larvae of Atlantic halibut, Hippoglossus hippoglossus L. Int J Syst Bacteriol 42, 451–458.[CrossRef] [Google Scholar]
  13. Huß, V. A. R., Festl, H. & Schleifer, K. H.(1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef] [Google Scholar]
  14. Jung, S.-Y., Oh, T.-K. & Yoon, J.-H.(2006).Tenacibaculum aestuarii sp. nov., isolated from a tidal flat sediment in Korea. Int J Syst Evol Microbiol 56, 1577–1581.[CrossRef] [Google Scholar]
  15. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  16. Lane, D.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  17. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  18. Pearson, W. R.(1990). Rapid and sensitive sequence comparison with fastp and fasta. Methods Enzymol 183, 63–98. [Google Scholar]
  19. Reichenbach, H.(1992). The order Cytophagales. In The Prokaryotes, a Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd edn, pp. 3631–3675. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  20. Sheu, S.-Y., Lin, K.-Y., Chou, J.-H., Chang, P.-S., Arun, A. B., Young, C. C. & Chen, W.-M.(2007).Tenacibaculum litopenaei sp. nov., isolated from a shrimp mariculture pond. Int J Syst Evol Microbiol 57, 1148–1153.[CrossRef] [Google Scholar]
  21. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S.(2001). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef] [Google Scholar]
  22. Thompson, J. D., Higgins, D. G. & Gibson, T. J.(1994).clustalw: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef] [Google Scholar]
  23. Wakabayashi, H., Hikida, M. & Masumura, K.(1986).Flexibacter maritimus sp. nov., a pathogen of marine fishes. Int J Syst Bacteriol 36, 396–398.[CrossRef] [Google Scholar]
  24. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  25. Yoon, J.-H., Kang, S.-J. & Oh, T.-K.(2005).Tenacibaculum lutimaris sp. nov., isolated from a tidal flat in the Yellow Sea, Korea. Int J Syst Evol Microbiol 55, 793–798.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65383-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65383-0
Loading

Data & Media loading...

Supplements

Biolog test results. [PDF](86 KB)

PDF

Neighbour-joining tree based on 16S rRNA gene sequences available from the databases showing the position of strain B390 . [PDF](18 KB)

PDF

Most cited Most Cited RSS feed