A Gram-negative, rod-shaped, motile bacterium, strain Rf4, which conserves energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation, was isolated from subsurface sediment undergoing uranium bioremediation. The 16S rRNA gene sequence of strain Rf4 matched sequences recovered in 16S rRNA gene clone libraries constructed from DNA extracted from groundwater sampled at the same time as the source sediment. Cells of strain Rf4 were regular, motile rods, 1.2–2.0 μm long and 0.5–0.6 μm in diameter, with rounded ends. Cells had one lateral flagellum. Growth was optimal at pH 6.5–7.0 and 32 °C. With acetate as the electron donor, strain Rf4 used Fe(III), Mn(IV), anthraquinone-2,6-disulfonate, malate and fumarate as electron acceptors and reduced U(VI) in cell suspensions. With poorly crystalline Fe(III) oxide as the electron acceptor, strain Rf4 oxidized the following electron donors: acetate, lactate, pyruvate and ethanol. Phylogenetic analysis of the 16S rRNA gene sequence of strain Rf4 placed it in the genus . Strain Rf4 was most closely related to ‘’ JW3 (95.9 % sequence similarity), Dfr1 (95.4 %) and Bem (95.1 %). Based on phylogenetic analysis and phenotypic differences between strain Rf4 and closely related species, this strain is described as a representative of a novel species, sp. nov. The type strain is Rf4 (=ATCC BAA-1134 =JCM 13001).


Article metrics loading...

Loading full text...

Full text loading...



  1. Anderson, R. T., Vrionis, H. A., Ortiz-Bernad, I., Resch, C. T., Long, P. E., Dayvault, R., Karp, K., Marutzky, S., Metzler, D. R. & other authors(2003). Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69, 5884–5891.[CrossRef] [Google Scholar]
  2. Chandler, D. P., Jarrell, A. E., Roden, E. R., Golova, J., Chernov, B., Schipma, M. J., Peacock, A. D. & Long, P. E.(2006). Suspension array analysis of 16S rRNA from Fe- and -reducing bacteria in uranium-contaminated sediments undergoing bioremediation. Appl Environ Microbiol 72, 4672–4687.[CrossRef] [Google Scholar]
  3. Coates, J. D., Ellis, D. J., Roden, E., Gaw, K., Blunt-Harris, E. L. & Lovley, D. R.(1998). Recovery of humics-reducing bacteria from a diversity of sedimentary environments. Appl Environ Microbiol 64, 1504–1509. [Google Scholar]
  4. Holmes, D. E., Nevin, K. P. & Lovley, D. R.(2004). Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54, 1591–1599.[CrossRef] [Google Scholar]
  5. Hungate, R. E.(1969). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132. [Google Scholar]
  6. Lovley, D. R. & Phillips, E. J. P.(1986). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol 51, 683–689. [Google Scholar]
  7. Lovley, D. R. & Phillips, E. J. P.(1988). Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54, 1472–1480. [Google Scholar]
  8. Lovley, D. R., Giovannoni, S. J., White, D. C., Champine, J. E., Phillips, E. J. P., Gorby, Y. A. & Goodwin, S.(1993).Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159, 336–344.[CrossRef] [Google Scholar]
  9. Lovley, D. R., Holmes, D. E. & Nevin, K. P.(2004). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49, 219–286. [Google Scholar]
  10. Narasingarao, P. & Häggblom, M. M.(2007).Pelobacter seleniigenes sp. nov., a selenate-respiring bacterium. Int J Syst Evol Microbiol 57, 1937–1942.[CrossRef] [Google Scholar]
  11. Nevin, K. P., Holmes, D. E., Woodard, T. L., Hinlein, E. S., Ostendorf, D. W. & Lovley, D. R.(2005).Geobacter bemidjiensis sp. nov. and Geobacter psychrophilus sp. nov., two novel Fe(III)-reducing subsurface isolates. Int J Syst Evol Microbiol 55, 1667–1674.[CrossRef] [Google Scholar]
  12. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  13. Schink, B.(1984). Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus sp. nov., and evidence for propionate formation from C2 compounds. Arch Microbiol 137, 33–41.[CrossRef] [Google Scholar]
  14. Schink, B.(1985). Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142, 295–301.[CrossRef] [Google Scholar]
  15. Schink, B. & Pfennig, N.(1982). Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-spore-forming bacterium. Arch Microbiol 133, 195–201.[CrossRef] [Google Scholar]
  16. Schink, B. & Stieb, M.(1983). Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov. Appl Environ Microbiol 45, 1905–1913. [Google Scholar]
  17. Shelobolina, E. S., Anderson, R. T., Vodyanitskii, Y. N., Sivtsov, A. V., Yuretich, R. & Lovley, D. R.(2004). Importance of clay size minerals for Fe(III) respiration in a petroleum-contaminated aquifer. Geobiology 2, 67–76.[CrossRef] [Google Scholar]
  18. Shelobolina, E. S., Coppi, M. V., Korenevsky, A. A., DiDonato, L. N., Sullivan, S. A., Konishi, H., Xu, H., Leang, C., Butler, J. E. & other authors(2007a). Importance of c-type cytochromes for U(VI) reduction by Geobacter sulfurreducens. BMC Microbiol 7, 16[CrossRef] [Google Scholar]
  19. Shelobolina, E. S., Nevin, K. P., Blakeney-Hayward, J. D., Johnsen, C. V., Plaia, T. W., Krader, P., Woodward, T., Holmes, D. E., VanPraagh, C. G. & Lovley, D. R.(2007b).Geobacter pickeringii sp. nov., Geobacter argillaceus sp. nov. and Pelosinus fermentans gen. nov., sp. nov., isolated from subsurface kaolin lenses. Int J Syst Evol Microbiol 57, 126–135.[CrossRef] [Google Scholar]
  20. Straub, K. L. & Buchholz-Cleven, B. E.(2001).Geobacter bremensis sp. nov. and Geobacter pelophilis sp. nov., two dissimilatory ferric-iron-reducing bacteria. Int J Syst Evol Microbiol 51, 1805–1808.[CrossRef] [Google Scholar]
  21. Straub, K. L., Hanzlik, M. & Buchholz-Cleven, B. E.(1998). The use of biologically produced ferrihydrite for the isolation of novel iron-reducing bacteria. Syst Appl Microbiol 21, 442–449.[CrossRef] [Google Scholar]
  22. Vandieken, V., Mußmann, M., Niemann, H. & Jørgensen, B. B.(2006).Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol 56, 1133–1139.[CrossRef] [Google Scholar]
  23. Zavarzina, D. G., Kolganova, T. V., Boulygina, E. S., Kostrikina, N. A., Tourova, T. P. & Zavarzin, G. A.(2006).Geoalkalibacter ferrihydriticus gen. nov. sp. nov., the first alkaliphilic representative of the family Geobacteraceae, isolated from a soda lake. Microbiology (English translation of Mikrobiologiia) 75, 673–682.[CrossRef] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error