Four Gram-negative, rod-shaped, non-spore-forming and non-motile bacterial strains were isolated from surfaces and biofilms associated with beer-bottling plants. Based on their 16S rRNA gene sequences these isolates were allocated to the genus . The sequence similarities of the isolates to the next most closely related type strains of this genus ranged from 96.4 to 98.3 %. The presence of menaquinone MK-6 and predominant fatty acids 15 : 0 iso, 17 : 1 iso 9, 15 : 0 iso 2-OH and 17 : 0 iso 3-OH supported the affiliation of these strains to the genus. The results of DNA–DNA hybridization, biochemical tests and chemotaxonomic properties allowed genotypic and phenotypic differentiation of the strains from the next most closely related species with validly published names. Therefore, the isolates represent four novel species for which the names (type strain F-Fue-04IIIaaaa=DSM 18017=CCUG 52546), (type strain 5-1St1a=DSM 18014=CCUG 52549), (type strain 26-3St2b=DSM 18015=CCUG 52548) and (type strain DW3=DSM 18016=CCUG 52547) are proposed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  2. Bernardet, J.-F., Vancanneyt, M., Matte-Tailliez, O., Grisez, L., Tailliez, P., Bizet, C., Nowakowski, M., Kerouault, B. & Swings, J.(2005). Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst Appl Microbiol 28, 640–660.[CrossRef] [Google Scholar]
  3. Buchholz-Cleven, B. E. E., Rattunde, B. & Straub, K. L.(1997). Screening for genetic diversity of isolates of anaerobic Fe(II)-oxidizing bacteria using DGGE and whole-cell hybridization. Syst Appl Microbiol 20, 301–309.[CrossRef] [Google Scholar]
  4. Buck, J. D.(1982). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993. [Google Scholar]
  5. Campbell, L. L. & Williams, O. B.(1951). A study of chitin-decomposing micro-organisms of marine origin. J Gen Microbiol 5, 894–905.[CrossRef] [Google Scholar]
  6. Cerny, G.(1978). Studies on the aminopeptidase test for the distinction of gram-negative from gram-positive bacteria. Appl Microbiol Biotechnol 5, 113–122.[CrossRef] [Google Scholar]
  7. de Beer, H., Hugo, C. J., Jooste, P. J., Willems, A., Vancanneyt, M., Coenye, T. & Vandamme, P. A. R.(2005).Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55, 2149–2153.[CrossRef] [Google Scholar]
  8. de Beer, H., Hugo, C. J., Jooste, P. J., Vancanneyt, M., Coenye, T. & Vandamme, P.(2006).Chryseobacterium piscium sp. nov., isolated from fish of the South Atlantic Ocean off South Africa. Int J Syst Evol Microbiol 56, 1317–1322.[CrossRef] [Google Scholar]
  9. Gerhardt, P., Murray, R. G. E., Costilow, R. N., Nester, E. W., Wood, W. A., Krieg, N. R. & Phillips, G. B. (editors)(1981).Methods for General Bacteriology. Washington, DC: American Society for Microbiology.
  10. Harrison, F. C.(1929). The discoloration of halibut. Can J Res 1, 214–239.[CrossRef] [Google Scholar]
  11. Holmes, B., Owen, R. J., Steigerwalt, A. G. & Brenner, D. J.(1984).Flavobacterium gleum, a new species found in human clinical specimens. Int J Syst Bacteriol 34, 21–25.[CrossRef] [Google Scholar]
  12. Hu, H.-Y., Fujie, K. & Urano, K.(1999). Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J Biosci Bioeng 87, 378–382.[CrossRef] [Google Scholar]
  13. Hugo, C. J., Segers, P., Hoste, B., Vancanneyt, M. & Kersters, K.(2003).Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53, 771–777.[CrossRef] [Google Scholar]
  14. IUPAC-IUB Commission on Biochemical Nomenclature (CBN)(1977). The nomenclature of lipids. Eur J Biochem 79, 11–21.[CrossRef] [Google Scholar]
  15. Kämpfer, P., Dreyer, U., Neef, A., Dott, W. & Busse, H.-J.(2003).Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53, 93–97.[CrossRef] [Google Scholar]
  16. Keswani, J. & Whitman, W. B.(2001). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51, 667–678. [Google Scholar]
  17. Kim, K. K., Bae, H.-S., Schumann, P. & Lee, S.-T.(2005a).Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55, 133–138.[CrossRef] [Google Scholar]
  18. Kim, K. K., Kim, M. K., Lim, J. H., Park, H. Y. & Lee, S.-T.(2005b). Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov. Int J Syst Evol Microbiol 55, 1287–1293.[CrossRef] [Google Scholar]
  19. Kumar, S., Tamura, K. & Nei, M.(2004). MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  20. Lipski, A. & Altendorf, K.(1997). Identification of heterotrophic bacteria isolated from ammonia-supplied experimental biofilters. Syst Appl Microbiol 20, 448–457.[CrossRef] [Google Scholar]
  21. MacFaddin, J. F.(1980).Biochemical Tests for Identification of Medical Bacteria. Baltimore: Williams & Wilkins.
  22. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  23. Michel, C., Matte-Tailliez, O., Kerouault, B. & Bernardet, J.-F.(2005). Resistance pattern and assessment of phenicol agents' minimum inhibitory concentration in multiple drug resistant Chryseobacterium isolates from fish and aquatic habitats. J Appl Microbiol 99, 323–332.[CrossRef] [Google Scholar]
  24. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A. & Parlett, J. H.(1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef] [Google Scholar]
  25. Mudarris, M., Austin, B., Segers, P., Vancanneyt, M., Hoste, B. & Bernardet, J.-F.(1994).Flavobacterium scophthalmum sp. nov., a pathogen of turbot (Scophthalmus maximus L.). Int J Syst Bacteriol 44, 447–453.[CrossRef] [Google Scholar]
  26. Muyzer, G., Teske, A., Wirsen, C. O. & Jannasch, H. W.(1995). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis. Arch Microbiol 164, 165–172.[CrossRef] [Google Scholar]
  27. Nichols, P. D., Guckert, J. B. & White, D. C.(1986). Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5, 49–55.[CrossRef] [Google Scholar]
  28. Park, M. S., Jung, S. R., Lee, K. H., Lee, M.-S., Do, J. O., Kim, S. B. & Bae, K. S.(2006).Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56, 433–438.[CrossRef] [Google Scholar]
  29. Quan, Z.-X., Kim, K. K., Kim, M. K., Jin, L. & Lee, S.-T.(2007).Chryseobacterium caeni sp. nov., isolated from bioreactor sludge. Int J Syst Evol Microbiol 57, 141–145.[CrossRef] [Google Scholar]
  30. Sasser, M.(1990). Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology, pp. 199–204. Edited by Z. Klement, K. Rudolph & D. C. Sands. Budapest: Akademiai Kiado.
  31. Shen, F. T., Kämpfer, P., Young, C. C., Lai, W. A. & Arun, A. B.(2005).Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55, 1301–1304.[CrossRef] [Google Scholar]
  32. Shimomura, K., Kaji, S. & Hiraishi, A.(2005).Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55, 1903–1906.[CrossRef] [Google Scholar]
  33. Tai, C.-J., Kuo, H.-P., Lee, F.-L., Chen, H.-K., Yokota, A. & Lo, C.-C.(2006).Chryseobacterium taiwanense sp. nov., isolated from soil in Taiwan. Int J Syst Evol Microbiol 56, 1771–1776.[CrossRef] [Google Scholar]
  34. Timke, M., Wolking, D., Wang-Lieu, N. Q., Altendorf, K. & Lipski, A.(2004). Microbial composition of biofilms in a brewery investigated by fatty acid analysis, fluorescence in situ hybridisation and isolation techniques. Appl Microbiol Biotechnol 66, 100–107.[CrossRef] [Google Scholar]
  35. Timke, M., Wang-Lieu, N. Q., Altendorf, K. & Lipski, A.(2005). Community structure and diversity of biofilms from a beer bottling plant as revealed using 16S rRNA gene clone libraries. Appl Environ Microbiol 71, 6446–6452.[CrossRef] [Google Scholar]
  36. Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K. & Holmes, B.(1994). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44, 827–831.[CrossRef] [Google Scholar]
  37. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  38. Yabuuchi, E., Kaneko, T., Yano, I., Moss, C. W. & Miyoshi, N.(1983).Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33, 580–598.[CrossRef] [Google Scholar]
  39. Yi, H., Yoon, H. I. & Chun, J.(2005).Sejongia antarctica gen. nov., sp. nov. and Sejongia jeonii sp. nov., isolated from the Antarctic. Int J Syst Evol Microbiol 55, 409–416.[CrossRef] [Google Scholar]
  40. Young, C.-C., Kämpfer, P., Shen, F.-T., Lai, W.-A. & Arun, A. B.(2005).Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55, 423–426.[CrossRef] [Google Scholar]
  41. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R.(1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef] [Google Scholar]

Data & Media loading...


Two-dimensional TLC of the polar lipids of the type strains of the four novel isolates. [PDF](62 KB)


Absorption spectra of acetone-extracted pigments of the type strains of the four novel isolates and of some reference type strains. [PDF](32 KB)


Scanning electron micrographs of cells of the type strains of the four novel isolates. [PDF](143 KB)


API ZYM profiles of the type strains of the four novel isolates and of some related species. [PDF](71 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error