1887

Abstract

A novel xylan-degrading bacterium, YB-45, was isolated from forest soil. The organism is a facultatively anaerobic, Gram-variable, motile, endospore-forming, rod-shaped bacterium. It grew optimally at 37 °C and pH 7.5 in the presence of 3 % (w/v) NaCl. The predominant cellular fatty acids were anteiso-C, iso-C and C. The DNA G+C content was 51.7 mol% and the predominant menaquinone was MK-7. Growth was observed with many carbohydrates, including xylan, as sole carbon sources. Strain YB-45 produces a wide variety of hydrolytic enzymes, such as xylanase, cellulase, amylase, -mannanase, -mannosidase, -xylosidase, -galactosidase, -galactosidase and -glucosidase. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain YB-45 belongs to the genus , sharing sequence similarity that was <96 %. It was related most closely to DSM 13815, with 95.7 % sequence similarity. On the basis of morphological, chemotaxonomic, physiological and phylogenetic properties, strain YB-45 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is YB-45 (=KCTC 3953=DSM 16971).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65350-0
2008-03-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/3/612.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65350-0&mimeType=html&fmt=ahah

References

  1. Ash, C., Priest, F. G. & Collins, M. D. ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.
    [Google Scholar]
  2. Ash, C., Priest, F. G. & Collins, M. D. ( 1994; ). Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 44, 852 [CrossRef]
    [Google Scholar]
  3. Aÿ, J., Goetz, F., Borriss, R. & Heinemann, U. ( 1998; ). Structure and function of the Bacillus hybrid enzyme GluXyn-1: native-like jellyroll fold preserved after insertion of autonomous globular domain. Proc Natl Acad Sci U S A 95, 6613–6618.[CrossRef]
    [Google Scholar]
  4. Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., Chandra, S., McGarrell, D. M., Schmidt, T. M. & other authors ( 2003; ). The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  5. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  6. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  7. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 2005; ). phylip (phylogeny inference package), version 3.65. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  9. Hasegawa, T., Takizawa, M. & Tanida, S. ( 1983; ). A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29, 319–322.[CrossRef]
    [Google Scholar]
  10. Hespell, R. B. ( 1996; ). Fermentation of xylan, corn fiber, or sugars to acetoin and butanediol by Bacillus polymyxa strains. Curr Microbiol 32, 291–296.[CrossRef]
    [Google Scholar]
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Kluge, A. G. & Farris, F. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  13. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  14. Lamed, R., Bayer, E., Saha, B. C. & Zeikus, J. G. ( 1988; ). Biotechnological potential of enzyme from unique thermophiles. In Proceedings of the Eighth International Biotechnology Symposium, pp. 371–383. Edited by G. Durand, L. Bobichon & J. Florent. Paris: French Society for Microbiology.
  15. Lanyi, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  16. Lee, H. J., Shin, D. J., Cho, N. C., Kim, H. O., Shin, S. Y., Im, S. Y., Lee, H. B., Chum, S. B. & Bai, S. ( 2000; ). Cloning, expression and nucleotide sequences of two xylanase genes from Paenibacillus sp. Biotechnol Lett 22, 387–392.[CrossRef]
    [Google Scholar]
  17. MacKenzie, S. L. ( 1987; ). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70, 151–160.
    [Google Scholar]
  18. Morales, P., Madarro, A., Flors, A., Sendra, J. M. & Pérez-González, J. A. ( 1995; ). Purification and characterization of a xylanase and an arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol 17, 424–429.[CrossRef]
    [Google Scholar]
  19. Nielsen, P. & Sorensen, J. ( 1997; ). Multi-target and medium-independent fungal antagonisms by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol Ecol 22, 183–192.[CrossRef]
    [Google Scholar]
  20. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S. ( 1955; ). The behaviour of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef]
    [Google Scholar]
  21. Rivas, R., Mateos, P., Martines-Molina, E. & Velázquez, E. ( 2005; ). Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int J Syst Evol Microbiol 55, 405–408.[CrossRef]
    [Google Scholar]
  22. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  23. Schleifer, K. H. ( 1985; ). Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18, 123–156.
    [Google Scholar]
  24. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  25. Smibert, R. M. & Krieg, N. R. ( 1981; ). General characterization. In Manual of Methods for General Bacteriology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  26. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  27. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  28. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  29. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  30. Timell, T. E. ( 1967; ). Recent progress in the chemistry of wood hemicelluloses. Wood Sci Technol 1, 45–70.[CrossRef]
    [Google Scholar]
  31. Velázquez, E., de Miguel, T., Poza, M., Rivas, R., Rosselló-Mora, R. & Villa, T. G. ( 2004; ). Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54, 59–64.[CrossRef]
    [Google Scholar]
  32. Viikari, L., Kantelinen, A., Sundquist, J. & Linko, M. ( 1994; ). Xylanases in bleaching: from an idea to the industry. FEMS Microbiol Rev 13, 335–350.
    [Google Scholar]
  33. von der Weid, I., Frois Duarte, G., van Elsas, J. D. & Seldin, L. ( 2002; ). Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int J Syst Evol Microbiol 52, 2147–2153.[CrossRef]
    [Google Scholar]
  34. Yoon, J.-H., Oh, H.-M., Yoon, B.-D., Kang, K. H. & Park, Y.-H. ( 2003; ). Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 53, 295–301.[CrossRef]
    [Google Scholar]
  35. Zamost, B. L., Nielsen, H. K. & Starnes, R. L. ( 1991; ). Thermostable enzymes for industrial applications. J Ind Microbiol 8, 71–82.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65350-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65350-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error