1887

Abstract

A novel thermophilic, sulfur-reducing chemolithoautotroph, strain ABI70S6, was isolated from a deep-sea hydrothermal field at the Yonaguni Knoll IV, Southern Okinawa Trough. Cells of strain ABI70S6 were motile rods, 0.9–2.0 μm in length and 0.4–0.8 μm in width. Strain ABI70S6 was an obligately anaerobic chemolithotroph, exhibiting hydrogen oxidation coupled with sulfur reduction. Growth was observed at 55–78 °C (optimum, 70 °C), pH 5.0–7.5 (optimum, pH 5.5–6.0) and 0.5–4.5 % NaCl (optimum, 3.0 % NaCl). H and elemental sulfur were utilized as electron donor and acceptor, respectively. The major fatty acids were C (40.0 %) and C (60.0 %). The G+C content of genomic DNA was 44.2 mol%. The physiological attributes of strain ABI70S6 are similar to those of species of genera within the family , most of which are thermophilic and chemolithoautotrophic sulfur reducers. However, 16S rRNA gene sequence similarities between the novel isolate and type strains of all species within the family were <87 %, which is close to the similarities found between the novel isolate and members of the family (<85 %). Based on physiological and phylogenetic features of the novel isolate, it is proposed that it represents a novel species in a novel genus, gen. nov., sp. nov., within the phylum . The type strain of is ABI70S6 (=JCM 13301=DSM 17441).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65349-0
2008-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/3/659.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65349-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Rolland, S., Crassous, P., Lesongeur, F., Zbinden, M., Le Gall, C., Godfroy, A., Page, A., Juniper, S. K. & other authors ( 2003; ). Desulfurobacterium crinifex sp. nov., a novel thermophilic, pinkish-streamer forming, chemolithoautotrophic bacterium isolated from a Juan de Fuca Ridge hydrothermal vent and amendment of the genus Desulfurobacterium. Extremophiles 7, 361–370.[CrossRef]
    [Google Scholar]
  2. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  3. Eder, W. & Huber, R. ( 2002; ). New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6, 309–318.[CrossRef]
    [Google Scholar]
  4. Garrity, G. M. & Holt, J. G. ( 2001; ). Phylum BIII. Thermodesulfobacteria phy. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 389–393. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  5. Gillis, M., Vandamme, P., De Vos, P., Swings, J. & Kersters, K. ( 2001; ). Polyphasic taxonomy. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 43–48. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  6. Hatchikian, E. C., Ollivier, B. & Garcia, J.-J. ( 2001; ). Family I. Thermodesulfobacteriaceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, p. 390. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  7. Huber, H., Diller, S., Horn, C. & Rachel, R. ( 2002; ). Thermovibrio ruber gen. nov., sp. nov., an extremely thermophilic, chemolithoautotrophic, nitrate-reducing bacterium that forms a deep branch within the phylum Aquificae. Int J Syst Evol Microbiol 52, 1859–1865.[CrossRef]
    [Google Scholar]
  8. Hugenholtz, P., Pitulle, C., Herschberger, K. L. & Pace, N. R. ( 1998; ). Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180, 366–376.
    [Google Scholar]
  9. Jeanthon, C., L'Haridon, S., Cueff, V., Banta, A., Reysenbach, A. L. & Prieur, D. ( 2002; ). Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52, 765–772.[CrossRef]
    [Google Scholar]
  10. Kashefi, K., Holmes, D. E., Reysenbach, A. L. & Lovley, D. R. ( 2002; ). Use of Fe(III) as an electron acceptor to recover previously uncultured hyperthermophiles: isolation and characterization of Geothermobacterium ferrireducens gen. nov., sp. nov. Appl Environ Microbiol 68, 1735–1742.[CrossRef]
    [Google Scholar]
  11. L'Haridon, S. & Jeanthon, C. ( 2001; ). Genus incertae sedis I. Desulfurobacterium. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 366–367. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  12. L'Haridon, S., Cilia, V., Messner, P., Raguenes, G., Gambacorta, A., Sleytr, U. B., Prieur, D. & Jeanthon, C. ( 1998; ). Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48, 701–711.[CrossRef]
    [Google Scholar]
  13. L'Haridon, S., Reysenbach, A.-L., Tindall, B. J., Schönheit, P., Banta, A., Johnsen, U., Schumann, P., Gambacorta, A., Stackebrandt, E. & Jeanthon, C. ( 2006; ). Desulfurobacterium atlanticum sp. nov., Desulfurobacterium pacificum sp. nov. and Thermovibrio guaymasensis sp. nov., three thermophilic members of the Desulfurobacteriaceae fam. nov., a deep branching lineage within Bacteria. Int J Syst Evol Microbiol 56, 2843–2852.[CrossRef]
    [Google Scholar]
  14. Lane, D. J. ( 1985; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  15. Lauerer, G., Kristjansson, J. K., Langworthy, T. A., König, H. & Stetter, K. O. ( 1986; ). Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8, 100–105.[CrossRef]
    [Google Scholar]
  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  17. Moussard, H., L'Haridon, S., Tindall, B. J., Banta, A., Schumann, P., Stackebrandt, E., Reysenbach, A. L. & Jeanthon, C. ( 2004; ). Thermodesulfatator indicus gen. nov., sp. nov., a novel thermophilic chemolithoautotrophic sulfate-reducing bacterium isolated from the Central Indian Ridge. Int J Syst Evol Microbiol 54, 227–233.[CrossRef]
    [Google Scholar]
  18. Nakagawa, S., Takai, K., Inagaki, F., Chiba, H., Ishibashi, J., Kataoka, S., Hirayama, H., Nunoura, T., Horikoshi, K. & Sako, Y. ( 2005; ). Variability in microbial community and venting chemistry in a sediment-hosted backarc hydrothermal system: impacts of subseafloor phase-separation. FEMS Microbiol Ecol 54, 141–155.[CrossRef]
    [Google Scholar]
  19. Porter, K. G. & Feig, Y. S. ( 1980; ). The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25, 943–948.[CrossRef]
    [Google Scholar]
  20. Reysenbach, A.-L. ( 2001; ). Phylum BI. Aquificae phy. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 359–367. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  21. Reysenbach, A.-L., Banta, A. B., Boone, D. R., Cary, S. C. & Luther, G. W. ( 2000a; ). Microbial essentials at hydrothermal vents. Nature 404, 835 [CrossRef]
    [Google Scholar]
  22. Reysenbach, A.-L., Longnecker, K. & Kirshtein, J. ( 2000b; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  23. Rozanova, E. P. & Pivovarova, T. A. ( 1988; ). Reclassification of Desulfovibrio thermophilus (Rozanova & Khudyakova, 1974). Mikrobiologiya 57, 102–106 (in Russian).
    [Google Scholar]
  24. Sako, Y., Takai, K., Ishida, Y., Uchida, A. & Katayama, Y. ( 1996; ). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46, 1099–1104.[CrossRef]
    [Google Scholar]
  25. Skirnisdottir, S., Hreggvidsson, G. O., Hjörleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O. & Kristjansson, J. K. ( 2000; ). Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66, 2835–2841.[CrossRef]
    [Google Scholar]
  26. Sonne-Hansen, J. & Ahring, B. K. ( 1999; ). Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22, 559–564.[CrossRef]
    [Google Scholar]
  27. Takai, K., Sugai, A., Itoh, T. & Horikoshi, K. ( 2000; ). Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50, 489–500.[CrossRef]
    [Google Scholar]
  28. Takai, K., Inoue, A. & Horikoshi, K. ( 2002; ). Methanothermococcus okinawensis sp. nov., a thermophilic, methane-producing archaeon isolated from a Western Pacific deep-sea hydrothermal vent system. Int J Syst Evol Microbiol 52, 1089–1095.[CrossRef]
    [Google Scholar]
  29. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K. ( 2003a; ). Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174.
    [Google Scholar]
  30. Takai, K., Nakagawa, S., Sako, Y. & Horikoshi, K. ( 2003b; ). Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53, 1947–1954.[CrossRef]
    [Google Scholar]
  31. Takai, K., Gamo, T., Tsunogai, U., Nakayama, N., Hirayama, H., Nealson, K. H. & Horikoshi, K. ( 2004; ). Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8, 269–282.
    [Google Scholar]
  32. Takai, K., Hirayama, H., Nakagawa, T., Suzuki, Y., Nealson, K. H. & Horikoshi, K. ( 2005; ). Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55, 183–189.[CrossRef]
    [Google Scholar]
  33. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  34. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  35. Van Dover, C. L., Humphris, S. E., Fornari, D., Cavanaugh, C. M., Collier, R., Goffredi, S. K., Hashimoto, J., Lilley, M. D., Reysenbach, A. L. & other authors ( 2001; ). Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294, 818–823.[CrossRef]
    [Google Scholar]
  36. Vetriani, C., Speck, M. D., Ellor, S. V., Lutz, R. A. & Starovoytov, V. ( 2004; ). Thermovibrio ammonificans sp. nov., a thermophilic, chemolithotrophic, nitrate-ammonifying bacterium from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 54, 175–181.[CrossRef]
    [Google Scholar]
  37. Zeikus, J. G., Dawson, M. A., Thompson, T. E., Ingvorsen, K. & Hatchikian, E. C. ( 1983; ). Microbial ecology of volcanic sulphidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129, 1159–1169.
    [Google Scholar]
  38. Zillig, W., Holz, I., Janekovic, D., Klenk, H. P., Imsel, E., Trent, J., Wunderl, S., Forjaz, V. H., Coutinho, R. & Ferreira, T. ( 1990; ). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172, 3959–3965.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65349-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65349-0
Loading

Data & Media loading...

Supplements

vol. , part 3, pp. 659 – 665

Effects of temperature, pH and NaCl concentration on the growth of strain ABI70S6

Phylogenetic tree of representative deeply branching members of the including environmental phylotypes based on 16S rRNA gene sequences

[ Single PDF file] (223 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error