1887

Abstract

A Gram-negative, facultatively anaerobic strain with slightly curved and straight rod-shaped cells, strain CL-GR58, was isolated from coastal seawater (near Gori, Korea). Analyses of the 16S rRNA gene sequence revealed that strain CL-GR58 belonged to the family with as its closest relative (gene sequence similarity of 90.9 %). Phylogenetic analyses of the 16S rRNA gene sequences showed that strain CL-GR58 was not associated with any known genera in the family . The novel strain grew in the presence of 1–10 % sea salts, optimally at 30–35 °C and pH 8. The major cellular fatty acids consisted of C 7 (48.5 %), C (14.8 %), C (12.2 %), C cyclo 8 (6.3 %) and summed feature 3 (C 7 and/or iso-C 2-OH, 6.0 %). Among the phylogenetically related genera, the fatty acid C was found only in strain CL-GR58. The DNA G+C content of the novel strain was 68.0 mol%. According to phylogenetic analyses of the 16S rRNA gene sequence, fatty acid content and the physiological data, strain CL-GR58 represents a novel species in a new genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is CL-GR58 (=KCCM 42674=DSM 18839).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65344-0
2008-02-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/2/479.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65344-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J.(1990). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef] [Google Scholar]
  2. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M.(1966). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45, 493–496. [Google Scholar]
  3. Bruns, A., Rohde, M. & Berthe-Corti, L.(2001).Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 51, 1997–2006.[CrossRef] [Google Scholar]
  4. Coenye, T., Goris, J., Spilker, T., Vandamme, P. & LiPuma, J. J.(2002). Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 40, 2062–2069.[CrossRef] [Google Scholar]
  5. Cole, J. R., Chai, B., Marsh, T. L., Farris, R. J., Wang, Q., Kulam, S. A., Chandra, S., McGarrell, D. M., Schmidt, T. M. & other authors(2003). The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef] [Google Scholar]
  6. Collins, M. D.(1985). Analysis of isoprenoid quinones. Methods Microbiol 18, 329–366. [Google Scholar]
  7. Eckert, B., Weber, O. B., Kirchhof, G., Halbritter, A., Stoffels, M. & Hartmann, A.(2001).Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51, 17–26. [Google Scholar]
  8. Favinger, J., Stadtwald, R. & Howard, G.(1989).Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie van Leeuwenhoek 55, 291–296.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  10. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  11. Garrity, G. M., Bell, J. A. & Lilburn, T.(2005). Family I. Rhodospirillaceae Pfennig and Trüper 1971, 17AL. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2, The Proteobacteria, part C, The Alpha-, Beta-, Delta-, and Epsilonprotebacteria, pp. 1–40. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  12. Guyoneaud, R., Mouné, S., Eatock, C., Bothorel, V., Hirschler-Réa, A., Willison, J., Duran, R., Liesack, W., Herbert, R. & other authors(2002). Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira navarrensis sp. nov., and Roseospira thiosulfatophila sp. nov. Arch Microbiol 178, 315–324.[CrossRef] [Google Scholar]
  13. Hansen, G. H. & Sørheim, R.(1991). Improved method for phenotypical characterization of marine bacteria. J Microbiol Methods 13, 231–241.[CrossRef] [Google Scholar]
  14. Imhoff, J. F., Petri, R. & Suling, J.(1998). Reclassification of species of the spiral-shaped phototrophic purple non-sulfur bacteria of the α-Proteobacteria: description of the new genera Phaeospirillum gen. nov., Rhodovibrio gen. nov., Rhodothalassium gen. nov. and Roseospira gen. nov. as well as transfer of Rhodospirillum fulvum to Phaeospirillum fulvum comb. nov., of Rhodospirilllum molischianum to Phaeospirillum molischianum comb. nov., of Rhodospirilium salinarum to Rhodovibrio salinarum comb. nov., of Rhodospirillum sodomense to Rhodovibrio sodomensis comb. nov., of Rhodospirillum salexigens to Rhodothalassium salexigens comb. nov. and of Rhodospirillum mediosalinum to Roseospira mediosalina comb. nov. Int J Syst Bacteriol 48, 793–798.[CrossRef] [Google Scholar]
  15. Jeon, Y.-S., Chung, H., Park, S., Hur, I., Lee, J.-H. & Chun, J.(2005). jphydit: a java-based integrated environment for molecular phylogeny of ribosomal RNA sequences. Bioinformatics 21, 3171–3173.[CrossRef] [Google Scholar]
  16. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  17. Kawasaki, H., Hoshino, Y., Kuraiski, Y. & Yamasato, K.(1992).Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 38, 541–551.[CrossRef] [Google Scholar]
  18. Khammas, K. M., Ageron, E., Grimont, P. A. D. & Kaiser, P.(1989).Azospirillum irakense sp. nov., a nitrogen-fixing bacterium associated with rice roots and rhizosphere soil. Res Microbiol 140, 679–693. [Google Scholar]
  19. Kumar, S., Tamura, K. & Nei, M.(2004).mega 3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  20. Labrenz, M., Tindall, B. J., Lawson, P. A., Collins, M. D., Schumann, P. & Hirsch, P.(2000).Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 50, 303–313.[CrossRef] [Google Scholar]
  21. Lane, D. J.(1991). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  22. Liu, C., Wu, Y., Li, L., Ma, Y. & Shao, Z.(2007).Thalassospira xiamenensis sp. nov. and Thalassospira profundimaris sp. nov. Int J Syst Evol Microbiol 57, 316–320.[CrossRef] [Google Scholar]
  23. López-López, A., Pujalte, M. J., Benlloch, S., Mata-Roig, M., Rosselló-Mora, R., Garay, E. & Rodríguez-Valera, F.(2002).Thalassospira lucentensis gen. nov., sp. nov., a new marine member of the α-Proteobacteria. Int J Syst Evol Microbiol 52, 1277–1283.[CrossRef] [Google Scholar]
  24. Lyman, J. & Fleming, R. H.(1940). Composition of sea water. J Mar Res 3, 134–146. [Google Scholar]
  25. Mack, E. E., Mandelco, L., Woese, C. R. & Madigan, M. T.(1993).Rhodospirillum sodomense, sp. nov., a Dead Sea Rhodospirillum species. Arch Microbiol 160, 363–371. [Google Scholar]
  26. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  27. Maszenan, A. M., Seviour, R. J., Patel, B. K. C., Janssen, P. H. & Wanner, J.(2005).Defluvicoccus vanus gen. nov., sp. nov., a novel Gram-negative coccus/coccobacillus in the ‘Alphaproteobacteria’ from activated sludge. Int J Syst Evol Microbiol 55, 2105–2111.[CrossRef] [Google Scholar]
  28. Mehnaz, S., Weselowski, B. & Lazarovits, G.(2007).Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57, 620–624.[CrossRef] [Google Scholar]
  29. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  30. Minnikin, D. E., O'Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, K. & Parlett, J. H.(1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2, 233–241.[CrossRef] [Google Scholar]
  31. Nissen, H. & Dundas, I. D.(1984).Rhodospirillum salinarum sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Arch Microbiol 138, 251–256.[CrossRef] [Google Scholar]
  32. Ostle, A. G. & Holt, J. G.(1982). Nile blue A as fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 44, 238–241. [Google Scholar]
  33. Peng, G., Wang, H., Zhang, G., Hou, W., Liu, Y., Wang, E. T. & Tan, Z.(2006).Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56, 1263–1271.[CrossRef] [Google Scholar]
  34. Pfennig, N., Lünsdorf, H., Süling, J. & Imhoff, J. F.(1997).Rhodospira trueperi gen. nov., a new phototrophic Proteobacterium of the alpha group. Arch Microbiol 168, 39–45.[CrossRef] [Google Scholar]
  35. Poly, F., Monrozier, L. J. & Bally, R.(2001). Improvement in the RFLP procedure for studying the diversity of nifH genes in the communities of nitrogen fixers in soil. Res Microbiol 152, 95–103.[CrossRef] [Google Scholar]
  36. Posada, D. & Crandall, K. A.(1998).modeltest: testing the model of DNA substitution. Bioinformatics 14, 817–818.[CrossRef] [Google Scholar]
  37. Reinhold, B., Hurek, T., Fendrik, I., Pot, B., Gillis, M., Kersters, K., Thielemans, S. & De Ley, J.(1987).Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of Kallar Grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37, 43–51.[CrossRef] [Google Scholar]
  38. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  39. Schenk, S. U. & Werner, D.(1988). Fatty acid analysis of four Azospirillum species reveals three groups. Arch Microbiol 149, 580–582.[CrossRef] [Google Scholar]
  40. Shi, B. H., Arunpairojana, V., Palakawong, S. & Yokota, A.(2002).Tistrella mobilis gen. nov., sp. nov., a novel polyhydroxyalkanoate-producing bacterium belonging to α-Proteobacteria. J Gen Appl Microbiol 48, 335–343.[CrossRef] [Google Scholar]
  41. Sizova, M. V., Panikov, N. S., Spiridonova, E. M., Slobodova, N. V. & Tourova, T. P.(2007). Novel facultative anaerobic acidotolerant Telmatospirillum siberiense gen. nov., sp. nov., isolated from mesotrophic fen. Syst Appl Microbiol 30, 213–220.[CrossRef] [Google Scholar]
  42. Sly, L. I. & Stackebrandt, E.(1999). Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum. Int J Syst Bacteriol 49, 541–544.[CrossRef] [Google Scholar]
  43. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  44. Suzuki, M., Nakagawa, Y., Harayama, S. & Yamamoto, S.(2001). Phylogenetic analysis and taxonomic study of marine Cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol 51, 1639–1652.[CrossRef] [Google Scholar]
  45. Swofford, D. L.(1998).paup–phylogenetic analysis using parsimony, version 4. Sunderland, MA: Sinauer Associates.
  46. Tarrand, J. J., Krieg, N. R. & Döbereiner, J.(1978). A taxonomic study of the Spirillum lipoferum group, with description of a new genus, Azospirillum gen. nov., and two species, Azospirillum lipoferum (Beijerinck) comb. nov., and Azospirillum brasilense sp. nov. Can J Microbiol 24, 967–980.[CrossRef] [Google Scholar]
  47. Woese, C. R., Stackebrandt, E., Weisburg, W. G., Paster, B. J., Madigan, M. T., Fowler, V. J., Hahn, C. M., Blanz, P., Gupta, R. & other authors(1984). The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5, 315–326.[CrossRef] [Google Scholar]
  48. Xie, C.-H. & Yokota, A.(2005).Azospirillum oryzae sp. nov., a nitrogen-fixing bacterium isolated from the roots of the rice plant Oryza sativa. Int J Syst Evol Microbiol 55, 1435–1438.[CrossRef] [Google Scholar]
  49. Zhang, D., Yang, H., Zhang, W., Huang, Z. & Liu, S.-J.(2003).Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 53, 1111–1114.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65344-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65344-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error