A novel strictly anaerobic, moderately thermophilic, sulfate-reducing bacterium, designated strain Lam5, was isolated from a hot spring in north-east Tunisia and was characterized phenotypically and phylogenetically. The isolate stained Gram-negative but had a Gram-positive-type cell wall. The strain comprised endospore-forming, slightly curved rod-shaped cells with peritrichous flagella. It did not possess desulfoviridin. Strain Lam5 grew anaerobically at 40–60 °C (optimally at 55 °C) and at pH 5.8–8.2 (optimally at pH 7.1); it did not require NaCl but tolerated concentrations up to 1.5 % (w/v). It utilized lactate, pyruvate, formate, ethanol, butanol, glycerol, propanol and H (plus acetate) as electron donors. Lactate was oxidized and pyruvate was fermented to acetate. Sulfate, sulfite, thiosulfate, As(V) and Fe(III) (but not elemental sulfur, fumarate, nitrate or nitrite) were used as electron acceptors. The G+C content of the genomic DNA was 46.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain Lam5 was a member of the genus , with as its closest relative (96 % similarity to the type strain). On the basis of genotypic, phenotypic and phylogenetic data, strain Lam5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Lam5 (=DSM 18033 =JCM 13992).


Article metrics loading...

Loading full text...

Full text loading...



  1. Aguiar, P., Beveridge, T. J. & Reysenbach, A.-L.(2004).Sulfurihydrogenibium azorense sp. nov., a thermophilic hydrogen-oxidizing microaerophile from terrestrial hot springs in the Azores. Int J Syst Evol Microbiol 54, 33–39.[CrossRef] [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J.(1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef] [Google Scholar]
  3. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F. F., Rapp, B. A. & Wheeler, D. L.(1999). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef] [Google Scholar]
  4. Blank, C. E., Cady, S. L. & Pace, N.(2002). Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68, 5123–5135.[CrossRef] [Google Scholar]
  5. Bohari, Y., Astruc, A., Astruc, M. & Cloud, J.(2001). Improvements of hydride generation for the speciation of arsenic in natural freshwater samples by HPLC-HG-AFS. J Anal At Spectrom 16, 774–778.[CrossRef] [Google Scholar]
  6. Chang, Y.-J., Peacock, A. D., Long, P., Stephen, J. R., McKinley, J. P., Macnaughton, S. J., Hussain, K. M. A., Saxton, A. M. & White, D. C.(2001). Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Appl Environ Microbiol 67, 3149–3160.[CrossRef] [Google Scholar]
  7. Cord-Ruwisch, R.(1985). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef] [Google Scholar]
  8. Ferris, M. J., Magnuson, T. S., Fagg, J. A., Thar, R., Kühl, M., Sheehan, K. B. & Henson, J. M.(2003). Microbially mediated sulfide production in a thermal acidic algal mat community in Yellowstone National Park. Environ Microbiol 5, 954–960.[CrossRef] [Google Scholar]
  9. Fishbain, S., Dillon, J. G., Gough, H. L. & Stahl, D. A.(2003). Linkage of high rates of sulfate reduction in Yellowstone hot springs to unique sequence types in the dissimilatory sulfate respiration pathway. Appl Environ Microbiol 69, 3663–3667.[CrossRef] [Google Scholar]
  10. Goorissen, H. P., Boschker, H. T. S., Stams, A. J. M. & Hansen, T. A.(2003). Isolation of thermophilic Desulfotomaculum strains with methanol and sulfite from solfataric mud pools, and characterization of Desulfotomaculum solfataricum sp. nov. Int J Syst Evol Microbiol 53, 1223–1229.[CrossRef] [Google Scholar]
  11. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  12. Haouari, O., Fardeau, M.-L., Casalot, L., Tholozan, J.-L., Hamdi, M. & Ollivier, B.(2006). Isolation of sulfate-reducing bacteria from Tunisian marine sediments and description of Desulfovibrio bizertensis sp. nov. Int J Syst Evol Microbiol 56, 2909–2913.[CrossRef] [Google Scholar]
  13. Henry, E. A., Devereux, R., Maki, J. S., Gilmour, C. C., Woese, C. R., Mandelco, L., Schauder, R., Remsen, C. C. & Mitchell, R.(1994).Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161, 62–69.[CrossRef] [Google Scholar]
  14. Hugenholtz, P., Pitulle, C., Hershberger, K. L. & Pace, N. R.(1998). Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180, 366–376. [Google Scholar]
  15. Hungate, R. E.(1969). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132. [Google Scholar]
  16. Itoh, T., Suzuki, K., Sanchez, P. C. & Nakase, T.(1999).Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int J Syst Bacteriol 49, 1157–1163.[CrossRef] [Google Scholar]
  17. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  18. Liu, Y., Karnauchow, T. M., Jarrell, K. F., Balkwill, D. L., Drake, G. R., Ringelberg, D., Clarno, R. & Boone, D. R.(1997). Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring. Int J Syst Bacteriol 47, 615–621.[CrossRef] [Google Scholar]
  19. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M. & Tiedje, J. M.(2001). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef] [Google Scholar]
  20. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  21. Meyer-Dombard, D. R., Shock, E. L. & Amend, J. P.(2005). Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3, 211–227.[CrossRef] [Google Scholar]
  22. Miranda-Tello, E., Fardeau, M.-L., Fernández, L., Ramírez, F., Cayol, J.-L., Thomas, P., Garcia, J.-L. & Ollivier, B.(2003).Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9, 97–103.[CrossRef] [Google Scholar]
  23. Miranda-Tello, E., Fardeau, M.-L., Thomas, P., Ramírez, F., Casalot, L., Cayol, J.-L., Garcia, J.-L. & Ollivier, B.(2004).Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54, 169–174.[CrossRef] [Google Scholar]
  24. Newman, D. K., Kennedy, E. K., Coates, J. D., Ahmann, D., Ellis, D. J., Lovley, D. & Morel, F. M. M.(1997). Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168, 380–388.[CrossRef] [Google Scholar]
  25. Postgate, J. R.(1959). A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183, 481–482. [Google Scholar]
  26. Reysenbach, A.-L. & Shock, E.(2002). Merging genomes with geochemistry in hydrothermal ecosystems. Science 296, 1077–1082.[CrossRef] [Google Scholar]
  27. Reysenbach, A.-L., Wickham, G. S. & Pace, N. R.(1994). Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60, 2113–2119. [Google Scholar]
  28. Rodier, J., Broutin, J. P., Chambon, P., Champsaur, H. & Rodi, L.(1996).L'Analyse de l'Eau. Paris: Dunod (in French).
  29. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  30. Skirnisdottir, S., Hreggvidsson, O. G., Hjörleifsdottir, S., Marteinsson, V. T., Petursdottir, S. K., Holst, O. & Kristjansson, J. K.(2000). Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66, 2835–2841.[CrossRef] [Google Scholar]
  31. Sonne-Hansen, J. & Ahring, B. K.(1999).Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22, 559–564.[CrossRef] [Google Scholar]
  32. Stackebrandt, E., Sproer, C., Rainey, F. A., Burghardt, J., Päuker, O. & Hippe, H.(1997). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47, 1134–1139.[CrossRef] [Google Scholar]
  33. Thevenieau, F., Fardeau, M.-L., Ollivier, B., Joulian, C. & Baena, S.(2007).Desulfomicrobium thermophilum sp. nov., a novel thermophilic sulphate-reducing bacterium isolated from a terrestrial hot spring in Colombia. Extremophiles 11, 295–303.[CrossRef] [Google Scholar]
  34. Widdel, F. & Pfennig, N.(1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129, 395–400.[CrossRef] [Google Scholar]
  35. Zeikus, J. G., Dawson, M. A., Thompson, T. E., Ingvorsen, K. & Hatchikian, E. C.(1983). Microbial ecology of volcanic sulfidogenesis: isolation and characterization of Thermodesulfotobacterium commune gen. nov. and sp. nov. J Gen Microbiol 129, 1159–1169. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error