1887

Abstract

An obligately anaerobic, spore-forming, Gram-type-positive but Gram-staining-negative thermophilic bacterium, strain JW/YJL-F3, was isolated from a Fijian hot spring sediment sample. Cells of strain JW/YJL-F3 were straight to slightly curved rods, 0.5–1.2 μm in diameter and 1.5–19 μm long. The temperature range for growth was between 40 and 67 °C, with an optimum at 60–63 °C. The pH range for growth was 4.5–8.4 with an optimum of 6.8. The salinity range for growth was 0–0.5 %. Strain JW/YJL-F3 utilized a range of substrates including arabinose, cellobiose, galactose, glucose, inulin, lactose, maltose, mannose, raffinose, ribose, trehalose, xylose and yeast extract as carbon and energy sources. The major fermentation end products from glucose were ethanol, acetate and formate. Strain JW/YJL-F3 converted thiosulfate to elemental sulfur, producing sulfur globules. The DNA G+C content was 37.6 mol% as determined by HPLC. Phylogenetic analysis using the 16S rRNA gene sequence indicated that the isolate is distantly related to the clade of the genus . However, (96.7 % similarity to the type strain) and were the closest relatives, forming a separate, well-supported clade together with the novel isolate. Because , and strain JW/YJL-F3 have different features from other species, including a higher G+C content and formate production, and are placed distantly from the remaining species of (greater than 10 % distance) in the 16S rRNA gene sequence analysis, we propose to place the new isolate JW/YJL-F3 and and into the novel genus gen. nov. as gen. nov., sp. nov. (the type species), comb. nov. and comb. nov., respectively. The type strain of is JW/YJL-F3 (=ATCC BAA-1278 =DSM 17918).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65329-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/3/666.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65329-0&mimeType=html&fmt=ahah

References

  1. Cann, I. K. O., Stroot, P. G., Mackie, K. R., White, B. A. & Mackie, R. I.(2001). Characterization of two novel saccharolytic, anaerobic thermophiles, Thermoanaerobacterium polysaccharolyticum sp. nov. and Thermoanaerobacterium zeae sp. nov., and emendation of the genus Thermoanaerobacterium. Int J Syst Evol Microbiol 51, 293–302. [Google Scholar]
  2. Carpita, N. C., Kanabus, J. & Housley, T. L.(1989). Linkage structure of fructans and fructan oligomers from Triticum aestivum and Festuca arundinacea leaves. J Plant Physiol 134, 162–168.[CrossRef] [Google Scholar]
  3. Drent, W. J., Lahpor, G. A., Wiegant, W. M. & Gottschal, J. C.(1991). Fermentation of inulin by Clostridium thermosuccinogenes sp. nov., a thermophilic anaerobic bacterium isolated from various habitats. Appl Environ Microbiol 57, 455–462. [Google Scholar]
  4. Felsenstein, J.(2001).phylip (phylogeny inference package) version 3.6a2.1. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  5. Freier, D., Mothershed, C. P. & Wiegel, J.(1988). Characterization of Clostridium thermocellum JW-20. Appl Environ Microbiol 54, 204–211. [Google Scholar]
  6. Jukes, T. H. & Cantor, C. R.(1969). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  7. Lee, Y. E., Jain, M. K., Lee, C., Lowe, S. E. & Zeikus, G.(1993). Taxonomic distinction of saccharolytic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of Thermoanaerobium brockii, Clostridium thermosulfurogenes, and Clostridium thermohydrosulfuricum E100-69 as Thermoanaerobacter brockii comb. nov, Thermoanaerobacterium thermosulfurigenes comb. nov., and Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of Clostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int J Syst Bacteriol 43, 41–51.[CrossRef] [Google Scholar]
  8. Lee, Y.-J., Wagner, I. D., Brice, M. E., Kevbrin, V. V., Mills, G. L., Romanek, C. S. & Wiegel, J.(2005).Thermosediminibacter oceani gen. nov., sp. nov. and Thermosediminibacter litoriperuensis sp. nov., new anaerobic thermophilic bacteria isolated from Peru Margin. Extremophiles 9, 375–383.[CrossRef] [Google Scholar]
  9. Lee, Y.-J., Romanek, C. S., Mills, G. L., Davis, R. C., Whitman, W. B. & Wiegel, J.(2006).Gracilibacter thermotolerans gen. nov., sp. nov., an anaerobic thermotolerant bacterium from a constructed wetland receiving acid sulfate water. Int J Syst Evol Microbiol 56, 2089–2093.[CrossRef] [Google Scholar]
  10. Lee, Y.-J., Dashti, M., Prange, A., Rainey, F. A., Rohde, M., Whitman, W. B. & Wiegel, J.(2007).Thermoanaerobacter sulfurigignens sp. nov., an anaerobic thermophilic bacterium that reduces 1 M thiosulfate to elemental sulfur and tolerates 90 mM sulfite. Int J Syst Evol Microbiol 57, 1429–1434.[CrossRef] [Google Scholar]
  11. Liu, S.-Y., Rainey, F. A., Morgan, H. W., Mayer, F. & Wiegel, J.(1996).Thermoanaerobacterium aotearoense sp. nov., a slightly acidophilic, anaerobic thermophile isolated from various hot springs in New Zealand, and emendation of the genus Thermoanaerobacterium. Int J Syst Bacteriol 46, 388–396.[CrossRef] [Google Scholar]
  12. Ljungdahl, L. G. & Wiegel, J.(1986). Anaerobic fermentations. In Manual of Industrial Microbiology and Biotechnology, pp. 84–96. Edited by A. L. Demain & N. A. Solomon. Washington, DC: American Society for Microbiology.
  13. Ludwig, W., Schleifer, K. H. & Whitman, W. B.(2008). Revised roadmap to the phylum Firmicutes. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 3. Edited by P. De Vos, G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A. Rainey, K. H. Schleifer & W. B. Whitman. New York: Springer (in press).
  14. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  15. Pandey, A., Soccol, C. R., Selvakumar, P., Soccol, V. T., Krieger, N. & Fontana, J. D.(1999). Recent developments in microbial inulinases. Its production, properties, and industrial applications. Appl Biochem Biotechnol 81, 35–52.[CrossRef] [Google Scholar]
  16. Roberfroid, M. B.(2005). Introducing inulin-type fructans. Br J Nutr 93, S13–S15.[CrossRef] [Google Scholar]
  17. Rowland, I. R., Rumney, C. J., Coutts, J. T. & Lievense, L. C.(1998). Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19, 281–285.[CrossRef] [Google Scholar]
  18. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  19. Schink, B. & Zeikus, J. G.(1983).Clostridium thermosulfurogenes sp. nov., a new thermophile that produces elemental sulphur from thiosulphate. J Gen Microbiol 129, 1149–1158. [Google Scholar]
  20. Sridhar, J., Eiteman, M. A. & Wiegel, J. W.(2000). Elucidation of enzymes in fermentation pathways used by Clostridium thermosuccinogenes growing on inulin. Appl Environ Microbiol 66, 246–251.[CrossRef] [Google Scholar]
  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  22. Vandamme, E. J. & Derycke, D. G.(1983). Microbial inulinases: fermentation process, properties, and applications. Adv Appl Microbiol 29, 139–176. [Google Scholar]
  23. Wiegel, J.(1981). Distinction between the Gram reaction and the Gram type of bacteria. Int J Syst Bacteriol 31, 88[CrossRef] [Google Scholar]
  24. Wiegel, J.(1998). Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2, 257–267.[CrossRef] [Google Scholar]
  25. Wiegel, J. & Ljungdahl, L. G.(1981).Thermoanaerobacter ethanolicus gen. nov., spec. nov., a new, extreme thermophilic, anaerobic bacterium. Arch Microbiol 128, 343–348.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65329-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65329-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error