Three bacterial strains were isolated from different saline soils in Spain. The novel strains were moderately halophilic, exopolysaccharide-producing, Gram-negative, non-motile rods. The strains required NaCl and grew best with 7.5−10 % (w/v) NaCl in the medium. They formed wax-coloured colonies, were oxidase-positive and showed respiratory metabolism, using oxygen, nitrate and nitrite as terminal electron acceptors. The novel strains were able to denitrify and did not produce acid from sugars. The DNA G+C contents varied between 62.7 and 66.2 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and sequence signatures of this gene showed that all three novel isolates belonged to the genus in the class and formed an independent phylogenetic line. The most phylogenetically related species were , and , with which the novel strains showed 16S rRNA gene sequence similarity values of between 96.3 and 95.2 %. The principal fatty acids of the novel strains were 16 : 0, 18 : 17, 16 : 17 and 19 : 0 cyclo 8. The predominant respiratory lipoquinone was ubiquinone with nine isoprene units (Q-9). The name sp. nov. is proposed for these isolates. The type strain is SP4 (=CECT 7282=LMG 24145).


Article metrics loading...

Loading full text...

Full text loading...



  1. Arias, S., Del Moral, A., Ferrer, M. R., Quesada, E. & Béjar, V.(2003). Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7, 319–326.[CrossRef] [Google Scholar]
  2. Bouchotroch, S., Quesada, E., Del Moral, A., Llamas, I. & Béjar, V.(2001).Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51, 1625–1632.[CrossRef] [Google Scholar]
  3. Dobson, S. J. & Franzmann, P. D.(1996). Unification of the genera Deleya (Bauman et al. 1993), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef] [Google Scholar]
  4. Euzéby, J. P.(2007). List of Prokaryotic Names with Standing in Nomenclature. http://www.bacterio.cict.fr/
  5. Franzmann, P. D. & Tindall, B. J.(1990). A chemotaxonomic study of members of the family Halomonadaceae. Syst Appl Microbiol 13, 142–147.[CrossRef] [Google Scholar]
  6. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E.(1988).Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef] [Google Scholar]
  7. Garrity, G. M., Bell, J. A. & Liburn, T.(2005). Family IV. Halomomadaceae Franzmann, Wehmeyer and Stackebrandt 1989, 205VP emend. Dobson and Franzmann 1996, 558. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2. Edited by D. J. Brenner, N. R. Krieg, J. T. Staley & G. M. Garrity. New York: Springer.
  8. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  9. Lind, E. & Ursing, J.(1986). Clinical strains of Enterobacter agglomerans (synonyms: Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand [B] 94, 205–213. [Google Scholar]
  10. Marmur, J. & Doty, P.(1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef] [Google Scholar]
  11. Martínez-Cánovas, M. J., Béjar, V., Martínez-Checa, F. & Quesada, E.(2004a).Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Málaga, southern Spain. Int J Syst Evol Microbiol 54, 1329–1332.[CrossRef] [Google Scholar]
  12. Martínez-Cánovas, M. J., Quesada, E., Llamas, I. & Bejar, V.(2004b).Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54, 733–737.[CrossRef] [Google Scholar]
  13. Martínez-Checa, F., Béjar, V., Martinez-Cánovas, M. J., Llamas, I. & Quesada, E.(2005).Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almería, south-east Spain. Int J Syst Evol Microbiol 55, 2007–2011.[CrossRef] [Google Scholar]
  14. Mata, J. A., Martínez-Cánovas, M. J., Quesada, E. & Béjar, V.(2002). A detailed phenotypic characterization of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef] [Google Scholar]
  15. Moraine, R. A. & Rogovin, P.(1966). Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioeng 8, 511–524.[CrossRef] [Google Scholar]
  16. Owen, R. J. & Hill, L. R.(1979). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), 2nd edn, pp. 277–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  17. Owen, R. J. & Pitcher, D.(1985). Current methods for estimating DNA composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics, pp. 67–93. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
  18. Quesada, E., Ventosa, A., Rodríguez-Valera, F., Megías, L. & Ramos-Cormenzana, A.(1983). Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129, 2649–2657. [Google Scholar]
  19. Quesada, E., Valderrama, M. J., Béjar, V., Ventosa, A., Gutiérrez, M. C., Ruíz-Berraquero, F. & Ramos-Cormenzana, A.(1990).Volcaniella eurihalina gen. nov., sp. nov., a moderately halophilic nonmotile Gram-negative rod. Int J Syst Bacteriol 40, 261–267.[CrossRef] [Google Scholar]
  20. Quesada, E., Béjar, V., Del Moral, A., Ferrer, M. R., Calvo, C., Llamas, I., Martínez-Checa, F., Arias, S., Ruiz-García, C. & other authors(2004). Moderately halophilic, exopolysaccharide-producing bacteria. In Halophilic Microorganisms, pp. 297–314. Edited by A. Ventosa. Heidelberg: Springer-Verlag.
  21. Rodríguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A.(1981). Characteristics of the heterotropic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7, 235–243.[CrossRef] [Google Scholar]
  22. Romanenko, L. A., Schumann, P., Rohde, M., Mikhailov, V. V. & Stackebrandt, E.(2002).Halomonas halocynthiae sp. nov., isolated from the marine ascidian Halocynthia aurantium. Int J Syst Evol Microbiol 52, 1767–1772.[CrossRef] [Google Scholar]
  23. Romano, I., Giordano, A., Lama, L., Nicolaus, B. & Gambacorta, A.(2005).Halomonas campaniensis sp. nov., a haloalkaliphilic bacterium isolated from a mineral pool of Campania Region, Italy. Syst Appl Microbiol 28, 610–618.[CrossRef] [Google Scholar]
  24. Sneath, P. H. A. & Sokal, R. R.(1973).Numerical taxonomy. The Principles and Practice of Numerical Classification. San Francisco: Freeman, Williams & Wilkins Co.
  25. Sokal, R. R. & Michener, C. D.(1958). A statistical method for evaluating systematic relationships. Sci Bull 38, 1409–1438. [Google Scholar]
  26. Stanier, R. Y., Palleroni, N. J. & Duodoroff, M.(1966). The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43, 159–271.[CrossRef] [Google Scholar]
  27. Thompson, J. D., Gibson, T. J., Plewniak, K., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignments aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  28. Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A.(1982). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968. [Google Scholar]
  29. Ventosa, A., Nieto, J. J. & Oren, A.(1998). Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62, 504–544. [Google Scholar]
  30. Vreeland, R. H.(2005). Genus Halomonas. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2. The Proteobacteria, pp. 316–319. Edited by G. Garrity, D. J. Brenner, N. R. Krieg & J. T. Staley. New York: Springer.
  31. Wang, Y. N., Cai, H., Yu, S. L., Wang, Z., Liu, J. & Wu, X. L.(2007).Halomonas gudaonensis sp. nov., isolated from a saline soil contaminated by crude oil. Int J Syst Evol Microbiol 57, 911–915.[CrossRef] [Google Scholar]
  32. Yoon, J. H., Lee, K. C., Kho, Y. H., Kang, K. H., Kim, C. J. & Park, Y. H.(2002).Halomonas alimentaria sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol 52, 123–130. [Google Scholar]
  33. Ziemke, F., Manfred, G. H., Lalucat, J. & Roselló-Mora, R.(1998). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef] [Google Scholar]

Data & Media loading...


vol. , part 4, pp. 803 - 809

A dendrogram of phenotypic characteristics based on the simple-matching coefficient and UPGMA methods. [ PDF] 35 KB


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error