1887

Abstract

A Gram-negative, non-motile, facultatively anaerobic, denitrifying bacterial strain, designated Ho-11, was isolated from sludge of a leachate treatment plant and was characterized taxonomically by using a polyphasic approach. The G+C content of the genomic DNA was 63.5 mol%. Strain Ho-11 contained ubiquinone Q-8 as the major respiratory lipoquinone and putrescine as the predominant polyamine. The major fatty acids were summed feature 4 (C 7 and/or iso-C 2-OH; 29.3 %), C (28.0 %) and summed feature 7 (C 7, C 9 and/or C 12; 19.8 %). Comparative 16S rRNA gene sequence analysis showed that strain Ho-11 belonged to the family , class , and joined the evolutionary radiation enclosed by the genus . 16S rRNA gene sequence similarities between strain Ho-11 and the type strains of the two recognized species of the genus, DSM 11046 and DSM 12141, were 97.8 and 97.4 %, respectively. Levels of similarity between strain Ho-11 and all other recognized species of the family were below 95.6 %. Strain Ho-11 exhibited relatively low levels of DNA–DNA relatedness with respect to DSM 11046 (33 %) and DSM 12141 (28 %). On the basis of its phenotypic and genotypic properties together with phylogenetic distinctiveness, strain Ho-11 (=KCTC 12197=LMG 23411) should be classified in the genus as the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65314-0
2008-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/9/2141.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65314-0&mimeType=html&fmt=ahah

References

  1. Atlas, R. M.(1993).Handbook of Microbiological Media. Edited by L. C. Parks. Boca Raton, FL: CRC Press.
  2. Auling, G., Busse, H.-J., Pilz, F., Webb, L., Kneifel, H. & Claus, D.(1991). Rapid differentiation, by polyamine analysis, of Xanthomonas strains from phytopathogenic pseudomonads and other members of the class Proteobacteria interacting with plants. Int J Syst Bacteriol 41, 223–228.[CrossRef] [Google Scholar]
  3. Baek, S.-H., Kim, K.-H., Yin, C.-R., Jeon, C. O., Im, W.-T., Kim, K.-K. & Lee, S.-T.(2003). Isolation and characterization of bacteria capable of degrading phenol and reducing nitrate under low-oxygen conditions. Curr Microbiol 47, 462–466. [Google Scholar]
  4. Buck, J. D.(1982). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993. [Google Scholar]
  5. Busse, H.-J. & Auling, G.(1988). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11, 1–8.[CrossRef] [Google Scholar]
  6. Cappuccino, J. G. & Sherman, N.(2002).Microbiology: a Laboratory Manual, 6th edn. San Francisco: Benjamin Cummings.
  7. Denger, K., Laue, H. & Cook, A. M.(1997). Anaerobic taurine oxidation: a novel reaction by a nitrate-reducing Alcaligenes sp. Microbiology 143, 1919–1924.[CrossRef] [Google Scholar]
  8. Ezaki, T., Hashimoto, Y. & Yabuuchi, E.(1989). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef] [Google Scholar]
  9. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  10. Fitch, W. M.(1971). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef] [Google Scholar]
  11. Foss, S., Heyen, U. & Harder, J.(1998).Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, α-pinene, 2-carene, and α-phellandrene) and nitrate. Syst Appl Microbiol 21, 237–244.[CrossRef] [Google Scholar]
  12. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  13. Hiraishi, A., Ueda, Y., Ishihara, J. & Mori, T.(1996). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42, 457–469.[CrossRef] [Google Scholar]
  14. Kämpfer, P., Denger, K., Cook, A. M., Lee, S.-T., Jäckel, U., Denner, E. B. M. & Busse, H.-J.(2006).Castellaniella gen. nov., to accommodate the phylogenetic lineage of Alcaligenes defragrans, and proposal of Castellaniella defragrans gen. nov., comb. nov. and Castellaniella denitrificans sp. nov. Int J Syst Evol Microbiol 56, 815–819.[CrossRef] [Google Scholar]
  15. Kim, M. K., Im, W.-T., Ohta, H., Lee, M. & Lee, S.-T.(2005).Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria. J Microbiol 43, 152–157. [Google Scholar]
  16. Kimura, M.(1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  17. Kouker, G. & Jaeger, K.-E.(1987). Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53, 211–213. [Google Scholar]
  18. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  19. Mesbah, M., Premachandran, U. & Whitman, W. B.(1989). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef] [Google Scholar]
  20. Minnikin, D. E., Patel, P. V., Alshamaony, L. & Goodfellow, M.(1977). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27, 104–117.[CrossRef] [Google Scholar]
  21. Moore, D. D. & Dowhan, D.(1995). Preparation and analysis of DNA. In Current Protocols in Molecular Biology, pp. 2–11. Edited by F. W. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Wiley.
  22. Saitou, N. & Nei, M.(1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  23. Sasser, M.(1990).Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  24. Schenkel, E., Berlaimont, V., Dubois, J., Helson-Cambier, M. & Hanocq, M.(1995). Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 668, 189–197.[CrossRef] [Google Scholar]
  25. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  26. Ten, L. N., Im, W.-T., Kim, M.-K., Kang, M.-S. & Lee, S.-T.(2004). Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56, 375–382.[CrossRef] [Google Scholar]
  27. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef] [Google Scholar]
  28. Tschech, A. & Pfennig, N.(1984). Growth yield increase linked to caffeate reduction in Acetobacterium woodii. Arch Microbiol 137, 163–167.[CrossRef] [Google Scholar]
  29. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  30. Widdel, F. & Bak, F.(1992). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, 2nd edn, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  31. Widdel, F., Kohring, G.-W. & Mayer, F.(1983). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134, 286–294.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65314-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65314-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error