1887

Abstract

Many nanoflagellate morphospecies comprise an enormous variation of genotypes, probably indicating cryptic species. One of the best-investigated morphospecies with respect to molecular and ecophysiological variation are flagellates of the morphotype. Here, we have phylogenetically analysed three protein-coding genes (actin, alpha-tubulin, beta-tubulin), internal transcribed spacers (ITS1, ITS2) and the 5.8S rDNA of 17 -like strains isolated from soil, freshwater and marine samples in order to (i) test the validity of the current -like phylogenetic classification system based exclusively on small subunit (SSU) rDNA, (ii) elucidate the phylogenetic associations of SSU rDNA-unresolved strains and (iii) evaluate the validity of the assignment of ecophysiological adaptations to previously identified SSU rDNA sequence clades. All single-gene analyses show different patterns of support, are incongruent and identify a number of conflicting nodes. Likewise, a concatenation of all protein genes fails to recover specific SSU rDNA clades. However, a combined analysis of all genes confidently resolved the conflicts of the single genes and the protein-gene concatenations and resulted in a tree topology that is identical to the SSU rDNA analysis, but with enhanced phylogenetic resolution and decisively greater support. We conclude that, depending on the genes concatenated, a ‘supergene’ analysis minimizes artefactual effects of single genes and may be superior in its performance in phylogenetically analysing cryptic species. We confirm the validity of the SSU rDNA -like phyloclades and support the suggestion that these clades indeed seem to reflect certain ecophysiological adaptations.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65310-0
2008-03-01
2019-12-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/3/716.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65310-0&mimeType=html&fmt=ahah

References

  1. Arndt, H., Dietrich, D., Auer, B., Cleven, E. J., Graefenhahn, T., Weitere, M. & Mylnikov, A. P. ( 2000; ). Functional diversity of heterotrophic flagellates in aquatic ecosystems. In The Flagellates, pp. 240–268. Edited by B. S. C. Leadbeater & J. C. Green. London: Taylor & Francis.
  2. Auer, B. & Arndt, H. ( 2001; ). Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshw Biol 46, 959–972.[CrossRef]
    [Google Scholar]
  3. Avise, J. C. ( 2004; ). Molecular Markers, Natural History and Evolution. Sunderland, MA: Sinauer Associates.
  4. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. ( 2000; ). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977.[CrossRef]
    [Google Scholar]
  5. Baroin-Tourancheau, A., Villalobo, E., Tsau, N., Torres, A. & Pearlman, R. E. ( 1998; ). Protein coding gene trees in ciliates: comparison with rRNA-based phylogenies. Mol Phylogenet Evol 10, 299–309.[CrossRef]
    [Google Scholar]
  6. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K. K. & Das, I. ( 2006; ). Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22, 148–155.
    [Google Scholar]
  7. Boenigk, J. & Arndt, H. ( 2002; ). Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek 81, 465–480.[CrossRef]
    [Google Scholar]
  8. Boenigk, J., Stadler, P., Wiedlroither, A. & Hahn, M. W. ( 2004; ). Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol 70, 5787–5793.[CrossRef]
    [Google Scholar]
  9. Boenigk, J., Pfandl, K., Stadler, P. & Chatzinotas, A. ( 2005; ). High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7, 685–697.[CrossRef]
    [Google Scholar]
  10. Boenigk, J., Pfandl, K., Garstecki, T., Harms, H., Novarino, G. & Chatzinotas, A. ( 2006; ). Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol 72, 5159–5164.[CrossRef]
    [Google Scholar]
  11. Boenigk, J., Jost, S., Stoeck, T. & Garstecki, T. ( 2007; ). Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones. Environ Microbiol 9, 593–602.[CrossRef]
    [Google Scholar]
  12. Bojanic, N., Solic, M., Krstulovic, N., Sestanovic, S., Gladan, Z. N., Marasovic, I. & Brautovic, I. ( 2006; ). The role of ciliated protozoa within the microbial food web in the eutrophicated part of the Kastela Bay (middle Adriatic Sea). Sci Mar 70, 431–442.
    [Google Scholar]
  13. Bowe, L. M., Coat, G. & dePamphilis, C. W. ( 2000; ). Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc Natl Acad Sci U S A 97, 4092–4097.[CrossRef]
    [Google Scholar]
  14. Carlini, D. B., Reece, K. S. & Graves, J. E. ( 2000; ). Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Mol Biol Evol 17, 1353–1370.[CrossRef]
    [Google Scholar]
  15. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. & Thompson, J. D. ( 2003; ). Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31, 3497–3500.[CrossRef]
    [Google Scholar]
  16. Cleven, E. J. & Weisse, T. ( 2001; ). Seasonal succession and taxon-specific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat Microb Ecol 23, 147–161.[CrossRef]
    [Google Scholar]
  17. Coleman, A. W. ( 2002; ). Microbial eukaryote species. Science 297, 337
    [Google Scholar]
  18. Coleman, A. W. ( 2007; ). Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35, 3322–3329.[CrossRef]
    [Google Scholar]
  19. Coleman, A. W. & Mai, J. C. ( 1997; ). Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol 45, 168–177.[CrossRef]
    [Google Scholar]
  20. Cupples, C. G. & Pearlman, R. E. ( 1986; ). Isolation and characterization of the actin gene from Tetrahymena thermophila. Proc Natl Acad Sci U S A 83, 5160–5164.[CrossRef]
    [Google Scholar]
  21. Darling, K. F., Kucera, M., Pudsey, C. J. & Wade, C. M. ( 2004; ). Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. Proc Natl Acad Sci U S A 101, 7657–7662.[CrossRef]
    [Google Scholar]
  22. Diggles, B. K. & Adlard, R. D. ( 1997; ). Intraspecific variation in Cryptocaryon irritans. J Eukaryot Microbiol 44, 25–32.[CrossRef]
    [Google Scholar]
  23. Domaizon, I., Viboud, S. & Fontvieille, D. ( 2003; ). Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy – importance of mixotrophy. FEMS Microbiol Ecol 46, 317–329.[CrossRef]
    [Google Scholar]
  24. Edgcomb, V. P., Simpson, A. G., Zettler, L. A., Nerad, T. A., Patterson, D. J., Holder, M. E. & Sogin, M. L. ( 2002; ). Pelobionts are degenerate protists: insights from molecules and morphology. Mol Biol Evol 19, 978–982.[CrossRef]
    [Google Scholar]
  25. Edlind, T. D., Li, J., Visvesvara, G. S., Vodkin, M. H., McLaughlin, G. L. & Katiyar, S. K. ( 1996; ). Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Mol Phylogenet Evol 5, 359–367.[CrossRef]
    [Google Scholar]
  26. Felip, M., Bartumeus, F., Halac, S. & Catalan, J. ( 1999; ). Microbial plankton assemblages, composition and biomass, during two ice-free periods in a deep high mountain lake (Estany Redó, Pyrenees). J Limnol 58, 193–202.[CrossRef]
    [Google Scholar]
  27. Felsenstein, J. ( 1978; ). Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27, 401–410.[CrossRef]
    [Google Scholar]
  28. Finlay, B. J., Corliss, J. O., Esteban, G. & Fenchel, T. ( 1996; ). Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q Rev Biol 71, 221–237.[CrossRef]
    [Google Scholar]
  29. Gasol, J. M., Simons, A. M. & Kalff, J. ( 1995; ). Patterns in the top-down versus bottom-up regulation of heterotrophic nanoflagellates in temperate lakes. J Plankton Res 17, 1879–1903.[CrossRef]
    [Google Scholar]
  30. Gontcharov, A. A., Marin, B. & Melkonian, M. ( 2004; ). Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and rbcL sequence comparisons in the Zygnematophyceae (Streptophyta). Mol Biol Evol 21, 612–624.
    [Google Scholar]
  31. Hackstein, J. H. ( 1997; ). Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Antonie van Leeuwenhoek 72, 63–76.[CrossRef]
    [Google Scholar]
  32. Hahn, M. W. & Höfle, M. G. ( 1998; ). Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures. Appl Environ Microbiol 64, 1910–1918.
    [Google Scholar]
  33. Hahn, M. W., Lünsdorf, H., Wu, Q., Schauer, M., Höfle, M. G., Boenigk, J. & Stadler, P. ( 2003; ). Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69, 1442–1451.[CrossRef]
    [Google Scholar]
  34. Hahn, M. W., Stadler, P., Wu, Q. L. & Pockl, M. ( 2004; ). The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57, 379–390.[CrossRef]
    [Google Scholar]
  35. Harper, J. T., Waanders, E. & Keeling, P. J. ( 2005; ). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55, 487–496.[CrossRef]
    [Google Scholar]
  36. Hausmann, K., Selchow, P., Scheckenbach, F., Weitere, M. & Arndt, H. ( 2006; ). Cryptic species in a morphospecies complex of heterotrophic flagellates: the case study of Caecitellus spp. Acta Protozool 45, 415–431.
    [Google Scholar]
  37. Henikoff, S., Greene, E. A., Pietrokovski, S., Bork, P., Attwood, T. K. & Hood, L. ( 1997; ). Gene families: the taxonomy of protein paralogs and chimeras. Science 278, 609–614.[CrossRef]
    [Google Scholar]
  38. Hightower, R. C. & Meagher, R. B. ( 1986; ). The molecular evolution of actin. Genetics 114, 315–332.
    [Google Scholar]
  39. Hillis, D. M. & Dixon, M. T. ( 1991; ). Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66, 411–453.[CrossRef]
    [Google Scholar]
  40. Hoef-Emden, K., Marin, B. & Melkonian, M. ( 2002; ). Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J Mol Evol 55, 161–179.[CrossRef]
    [Google Scholar]
  41. Karol, K. G., McCourt, R. M., Cimino, M. T. & Delwiche, C. F. ( 2001; ). The closest living relatives of land plants. Science 294, 2351–2353.[CrossRef]
    [Google Scholar]
  42. Katz, L. A., McManus, G. B., Snoeyenbos-West, O. L. O., Pirog, K., Griffin, A. & Foissner, W. ( 2004; ). Reframing the microbial ‘everything is everywhere’ debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquat Microb Ecol 41, 55–65.
    [Google Scholar]
  43. Kim, O. T., Yura, K., Go, N. & Harumoto, T. ( 2004; ). Highly divergent actins from karyorelictean, heterotrich, and litostome ciliates. J Eukaryot Microbiol 51, 227–233.[CrossRef]
    [Google Scholar]
  44. Koch, T. A. & Ekelund, F. ( 2005; ). Strains of the heterotrophic flagellate Bodo designis from different environments vary considerably with respect to salinity preference and SSU rRNA gene composition. Protist 156, 97–112.[CrossRef]
    [Google Scholar]
  45. Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V. ( 2002; ). Selection in the evolution of gene duplications. Genome Biol 3
    [Google Scholar]
  46. Lajeunesse, T. C. ( 2005; ). “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22, 570–581.
    [Google Scholar]
  47. Lowe, C. D., Day, A., Kemp, S. J. & Montagnes, D. J. S. ( 2005; ). There are high levels of functional and genetic diversity in Oxyrrhis marina. J Eukaryot Microbiol 52, 250–257.[CrossRef]
    [Google Scholar]
  48. Machelon, V., Genermont, J. & Dattee, Y. ( 1984; ). A biometrical analysis of morphological variation within a section of the genus Euplotes (ciliata, hypotrichida), with special reference to the E. vannus complex of sibling species. Orig Life Evol Biosph 13, 249–267.[CrossRef]
    [Google Scholar]
  49. Maddison, W. P. ( 1997; ). Gene trees in species trees. Syst Biol 46, 523–536.[CrossRef]
    [Google Scholar]
  50. Maddison, W. P. & Maddison, D. R. ( 1992; ). MacClade: analysis of phylogeny and character evolution. Sunderland, MA: Sinauer Associates.
  51. Mallatt, J. & Winchell, C. J. ( 2002; ). Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19, 289–301.[CrossRef]
    [Google Scholar]
  52. Massana, R., Castresana, J., Balague, V., Guillou, L., Romari, K., Groisillier, A., Valentin, K. & Pedros-Alio, C. ( 2004; ). Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70, 3528–3534.[CrossRef]
    [Google Scholar]
  53. Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L. ( 1988; ). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499.[CrossRef]
    [Google Scholar]
  54. Medlin, L., Lange, M. & Baumann, M. ( 1994; ). Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33, 199–212.[CrossRef]
    [Google Scholar]
  55. Montresor, M., Lovejoy, C., Orsini, L. & Procaccini, G. ( 2003; ). Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol 26, 186–194.
    [Google Scholar]
  56. Nanney, D. L. ( 2004; ). No trivial pursuit. Bioscience 54, 720–721.[CrossRef]
    [Google Scholar]
  57. Nishi, A., Ishida, K. & Endoh, H. ( 2005; ). Reevaluation of the evolutionary position of opalinids based on 18S rDNA, and alpha- and beta-tubulin gene phylogenies. J Mol Evol 60, 695–705.[CrossRef]
    [Google Scholar]
  58. Nozaki, H., Misawa, K., Kajita, T., Kato, M., Nohara, S. & Watanabe, M. M. ( 2000; ). Origin and evolution of the colonial volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. Mol Phylogenet Evol 17, 256–268.[CrossRef]
    [Google Scholar]
  59. Parfrey, L. W., Barbero, E., Lasser, E., Dunthorn, M., Bhattacharya, D., Patterson, D. J. & Katz, L. A. ( 2006; ). Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2, e220 [CrossRef]
    [Google Scholar]
  60. Pelandakis, M., Serre, S. & Pernin, P. ( 2000; ). Analysis of the 5.8S rRNA gene and the internal transcribed spacers in Naegleria spp. and in N. fowleri. J Eukaryot Microbiol 47, 116–121.[CrossRef]
    [Google Scholar]
  61. Philippe, H. & Adoutte, A. ( 1996; ). The molecular phylogeny of protozoa: solid facts and uncertainties. In Evolutionary Relationships among Protozoa, pp. 25–52. Edited by G. H. Coombs, K. Vickerman, M. A. Sleigh & A. Warren. London: Kluwer Academic.
  62. Philippe, H., Lopez, P., Brinkmann, H., Budin, K., Germot, A., Laurent, J., Moreira, D., Müller, M. & Le Guyader, H. ( 2000; ). Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci 267, 1213–1221.[CrossRef]
    [Google Scholar]
  63. Poe, S. & Swofford, D. L. ( 1999; ). Taxon sampling revisited. Nature 398, 299–300.
    [Google Scholar]
  64. Posada, D. & Crandall, K. A. ( 2001; ). Selecting the best-fit model of nucleotide substitution. Syst Biol 50, 580–601.[CrossRef]
    [Google Scholar]
  65. Reece, K. S., McElroy, D. & Wu, R. ( 1992; ). Function and evolution of actins. Evol Biol 26, 1–34.
    [Google Scholar]
  66. Richards, T. A., Vepritskiy, A. A., Guliamova, D. E. & Nierzwicki-Bauer, S. A. ( 2005; ). The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol 7, 1413–1425.[CrossRef]
    [Google Scholar]
  67. Rodriguez, F., Derelle, E., Guillou, L., Le Gall, F., Vaulot, D. & Moreau, H. ( 2005; ). Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7, 853–859.[CrossRef]
    [Google Scholar]
  68. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  69. Rosselló-Mora, R. & Amann, R. ( 2001; ). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef]
    [Google Scholar]
  70. Sanderson, M. J. & Shaffer, H. B. ( 2002; ). Troubleshooting molecular phylogenetic analyses. Annu Rev Ecol Syst 33, 49–72.[CrossRef]
    [Google Scholar]
  71. Scheckenbach, F., Wylezich, C., Mylnikov, A. P., Weitere, M. & Arndt, H. ( 2006; ). Molecular comparisons of freshwater and marine isolates of the same morphospecies of heterotrophic flagellates. Appl Environ Microbiol 72, 6638–6643.[CrossRef]
    [Google Scholar]
  72. Schlegel, M. & Meisterfeld, R. ( 2003; ). The species problem in protozoa revisited. Eur J Protistol 39, 349–355.[CrossRef]
    [Google Scholar]
  73. Schmidt, S. L., Bernhard, D., Schlegel, M. & Fried, J. ( 2006; ). Fluorescence in situ hybridization with specific oligonucleotide rRNA probes distinguishes the sibling species Stylonychia lemnae and Stylonychia mytilus (Ciliophora, Spirotrichea). Protist 157, 21–30.[CrossRef]
    [Google Scholar]
  74. Shalchian-Tabrizi, K., Eikrem, W., Klaveness, D., Vaulot, D., Minge, M. A., Le Gall, F., Romari, K., Throndsen, J., Botnen, A. & other authors ( 2006a; ). Telonemia, a new protist phylum with affinity to chromist lineages. Proc Biol Sci 273, 1833–1842.[CrossRef]
    [Google Scholar]
  75. Shalchian-Tabrizi, K., Minge, M. A., Cavalier-Smith, T., Nedreklepp, J. M., Klaveness, D. & Jakobsen, K. S. ( 2006b; ). Combined heat shock protein 90 and ribosomal RNA sequence phylogeny supports multiple replacements of dinoflagellate plastids. J Eukaryot Microbiol 53, 217–224.[CrossRef]
    [Google Scholar]
  76. Sherr, E. B. & Sherr, B. F. ( 1994; ). Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28, 223–235.[CrossRef]
    [Google Scholar]
  77. Slapeta, J., Lopez-Garcia, P. & Moreira, D. ( 2006; ). Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23, 23–29.
    [Google Scholar]
  78. Swofford, D. L. ( 2002; ). paup*: Phylogenetic Analysis using Parsimony (and other methods). Sunderland, MA: Sinauer Associates.
  79. Tsuchiya, M., Kitazato, H. & Pawlowski, J. ( 2003; ). Analysis of internal transcribed spacer of ribosomal DNA reveals cryptic speciation in Planoglabratella opercularis. J Foraminiferal Res 33, 285–293.[CrossRef]
    [Google Scholar]
  80. van Hoek, A. H., van Alen, T. A., Sprakel, V. S., Hackstein, J. H. & Vogels, G. D. ( 1998; ). Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. Mol Biol Evol 15, 1195–1206.[CrossRef]
    [Google Scholar]
  81. von der Heyden, S. & Cavalier-Smith, T. ( 2005; ). Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J Syst Evol Microbiol 55, 2605–2621.[CrossRef]
    [Google Scholar]
  82. von der Heyden, S., Chao, E. E., Vickerman, K. & Cavalier-Smith, T. ( 2004; ). Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa. J Eukaryot Microbiol 51, 402–416.[CrossRef]
    [Google Scholar]
  83. Weitere, M. & Arndt, H. ( 2002; ). Water discharge-regulated bacteria/heterotrophic nanoflagellate (HNF) interactions in the water column of the river Rhine. Microb Ecol 44, 19–29.[CrossRef]
    [Google Scholar]
  84. Weitere, M. & Arndt, H. ( 2003; ). Structure of the heterotrophic flagellate community in the water column of the river Rhine (Germany). Eur J Protistol 39, 287–300.[CrossRef]
    [Google Scholar]
  85. White, T. J., Bruns, T., Lee, S. & Taylor, J. ( 1990; ). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications, pp. 315–322. Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White. San Diego: Academic Press.
  86. Zhao, Y., Yu, Y., Feng, W. & Shen, Y. ( 2003; ). Growth and production of free-living heterotrophic nanoflagellates in a eutrophic lake – Lake Donghu, Wuhan, China. Hydrobiologia 498, 85–95.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65310-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65310-0
Loading

Data & Media loading...

Supplements

GenBank accession numbers of genes sequenced in this study. [PDF](11 KB)

PDF

[PDF file of Supplementary Figs S1-S6](33 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error