Many nanoflagellate morphospecies comprise an enormous variation of genotypes, probably indicating cryptic species. One of the best-investigated morphospecies with respect to molecular and ecophysiological variation are flagellates of the morphotype. Here, we have phylogenetically analysed three protein-coding genes (actin, alpha-tubulin, beta-tubulin), internal transcribed spacers (ITS1, ITS2) and the 5.8S rDNA of 17 -like strains isolated from soil, freshwater and marine samples in order to (i) test the validity of the current -like phylogenetic classification system based exclusively on small subunit (SSU) rDNA, (ii) elucidate the phylogenetic associations of SSU rDNA-unresolved strains and (iii) evaluate the validity of the assignment of ecophysiological adaptations to previously identified SSU rDNA sequence clades. All single-gene analyses show different patterns of support, are incongruent and identify a number of conflicting nodes. Likewise, a concatenation of all protein genes fails to recover specific SSU rDNA clades. However, a combined analysis of all genes confidently resolved the conflicts of the single genes and the protein-gene concatenations and resulted in a tree topology that is identical to the SSU rDNA analysis, but with enhanced phylogenetic resolution and decisively greater support. We conclude that, depending on the genes concatenated, a ‘supergene’ analysis minimizes artefactual effects of single genes and may be superior in its performance in phylogenetically analysing cryptic species. We confirm the validity of the SSU rDNA -like phyloclades and support the suggestion that these clades indeed seem to reflect certain ecophysiological adaptations.


Article metrics loading...

Loading full text...

Full text loading...



  1. Arndt, H., Dietrich, D., Auer, B., Cleven, E. J., Graefenhahn, T., Weitere, M. & Mylnikov, A. P.(2000). Functional diversity of heterotrophic flagellates in aquatic ecosystems. In The Flagellates, pp. 240–268. Edited by B. S. C. Leadbeater & J. C. Green. London: Taylor & Francis.
  2. Auer, B. & Arndt, H.(2001). Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshw Biol 46, 959–972.[CrossRef] [Google Scholar]
  3. Avise, J. C.(2004).Molecular Markers, Natural History and Evolution. Sunderland, MA: Sinauer Associates.
  4. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F.(2000). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977.[CrossRef] [Google Scholar]
  5. Baroin-Tourancheau, A., Villalobo, E., Tsau, N., Torres, A. & Pearlman, R. E.(1998). Protein coding gene trees in ciliates: comparison with rRNA-based phylogenies. Mol Phylogenet Evol 10, 299–309.[CrossRef] [Google Scholar]
  6. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K., Meier, R., Winker, K., Ingram, K. K. & Das, I.(2006). Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22, 148–155. [Google Scholar]
  7. Boenigk, J. & Arndt, H.(2002). Bacterivory by heterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek 81, 465–480.[CrossRef] [Google Scholar]
  8. Boenigk, J., Stadler, P., Wiedlroither, A. & Hahn, M. W.(2004). Strain-specific differences in the grazing sensitivities of closely related ultramicrobacteria affiliated with the Polynucleobacter cluster. Appl Environ Microbiol 70, 5787–5793.[CrossRef] [Google Scholar]
  9. Boenigk, J., Pfandl, K., Stadler, P. & Chatzinotas, A.(2005). High diversity of the ‘Spumella-like’ flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7, 685–697.[CrossRef] [Google Scholar]
  10. Boenigk, J., Pfandl, K., Garstecki, T., Harms, H., Novarino, G. & Chatzinotas, A.(2006). Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol 72, 5159–5164.[CrossRef] [Google Scholar]
  11. Boenigk, J., Jost, S., Stoeck, T. & Garstecki, T.(2007). Differential thermal adaptation of clonal strains of a protist morphospecies originating from different climatic zones. Environ Microbiol 9, 593–602.[CrossRef] [Google Scholar]
  12. Bojanic, N., Solic, M., Krstulovic, N., Sestanovic, S., Gladan, Z. N., Marasovic, I. & Brautovic, I.(2006). The role of ciliated protozoa within the microbial food web in the eutrophicated part of the Kastela Bay (middle Adriatic Sea). Sci Mar 70, 431–442. [Google Scholar]
  13. Bowe, L. M., Coat, G. & dePamphilis, C. W.(2000). Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc Natl Acad Sci U S A 97, 4092–4097.[CrossRef] [Google Scholar]
  14. Carlini, D. B., Reece, K. S. & Graves, J. E.(2000). Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Mol Biol Evol 17, 1353–1370.[CrossRef] [Google Scholar]
  15. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G. & Thompson, J. D.(2003). Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31, 3497–3500.[CrossRef] [Google Scholar]
  16. Cleven, E. J. & Weisse, T.(2001). Seasonal succession and taxon-specific bacterial grazing rates of heterotrophic nanoflagellates in Lake Constance. Aquat Microb Ecol 23, 147–161.[CrossRef] [Google Scholar]
  17. Coleman, A. W.(2002). Microbial eukaryote species. Science 297, 337 [Google Scholar]
  18. Coleman, A. W.(2007). Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35, 3322–3329.[CrossRef] [Google Scholar]
  19. Coleman, A. W. & Mai, J. C.(1997). Ribosomal DNA ITS-1 and ITS-2 sequence comparisons as a tool for predicting genetic relatedness. J Mol Evol 45, 168–177.[CrossRef] [Google Scholar]
  20. Cupples, C. G. & Pearlman, R. E.(1986). Isolation and characterization of the actin gene from Tetrahymena thermophila. Proc Natl Acad Sci U S A 83, 5160–5164.[CrossRef] [Google Scholar]
  21. Darling, K. F., Kucera, M., Pudsey, C. J. & Wade, C. M.(2004). Molecular evidence links cryptic diversification in polar planktonic protists to Quaternary climate dynamics. Proc Natl Acad Sci U S A 101, 7657–7662.[CrossRef] [Google Scholar]
  22. Diggles, B. K. & Adlard, R. D.(1997). Intraspecific variation in Cryptocaryon irritans. J Eukaryot Microbiol 44, 25–32.[CrossRef] [Google Scholar]
  23. Domaizon, I., Viboud, S. & Fontvieille, D.(2003). Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy – importance of mixotrophy. FEMS Microbiol Ecol 46, 317–329.[CrossRef] [Google Scholar]
  24. Edgcomb, V. P., Simpson, A. G., Zettler, L. A., Nerad, T. A., Patterson, D. J., Holder, M. E. & Sogin, M. L.(2002). Pelobionts are degenerate protists: insights from molecules and morphology. Mol Biol Evol 19, 978–982.[CrossRef] [Google Scholar]
  25. Edlind, T. D., Li, J., Visvesvara, G. S., Vodkin, M. H., McLaughlin, G. L. & Katiyar, S. K.(1996). Phylogenetic analysis of beta-tubulin sequences from amitochondrial protozoa. Mol Phylogenet Evol 5, 359–367.[CrossRef] [Google Scholar]
  26. Felip, M., Bartumeus, F., Halac, S. & Catalan, J.(1999). Microbial plankton assemblages, composition and biomass, during two ice-free periods in a deep high mountain lake (Estany Redó, Pyrenees). J Limnol 58, 193–202.[CrossRef] [Google Scholar]
  27. Felsenstein, J.(1978). Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27, 401–410.[CrossRef] [Google Scholar]
  28. Finlay, B. J., Corliss, J. O., Esteban, G. & Fenchel, T.(1996). Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q Rev Biol 71, 221–237.[CrossRef] [Google Scholar]
  29. Gasol, J. M., Simons, A. M. & Kalff, J.(1995). Patterns in the top-down versus bottom-up regulation of heterotrophic nanoflagellates in temperate lakes. J Plankton Res 17, 1879–1903.[CrossRef] [Google Scholar]
  30. Gontcharov, A. A., Marin, B. & Melkonian, M.(2004). Are combined analyses better than single gene phylogenies? A case study using SSU rDNA and rbcL sequence comparisons in the Zygnematophyceae (Streptophyta). Mol Biol Evol 21, 612–624. [Google Scholar]
  31. Hackstein, J. H.(1997). Eukaryotic molecular biodiversity: systematic approaches for the assessment of symbiotic associations. Antonie van Leeuwenhoek 72, 63–76.[CrossRef] [Google Scholar]
  32. Hahn, M. W. & Höfle, M. G.(1998). Grazing pressure by a bacterivorous flagellate reverses the relative abundance of Comamonas acidovorans PX54 and Vibrio strain CB5 in chemostat cocultures. Appl Environ Microbiol 64, 1910–1918. [Google Scholar]
  33. Hahn, M. W., Lünsdorf, H., Wu, Q., Schauer, M., Höfle, M. G., Boenigk, J. & Stadler, P.(2003). Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol 69, 1442–1451.[CrossRef] [Google Scholar]
  34. Hahn, M. W., Stadler, P., Wu, Q. L. & Pockl, M.(2004). The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57, 379–390.[CrossRef] [Google Scholar]
  35. Harper, J. T., Waanders, E. & Keeling, P. J.(2005). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55, 487–496.[CrossRef] [Google Scholar]
  36. Hausmann, K., Selchow, P., Scheckenbach, F., Weitere, M. & Arndt, H.(2006). Cryptic species in a morphospecies complex of heterotrophic flagellates: the case study of Caecitellus spp. Acta Protozool 45, 415–431. [Google Scholar]
  37. Henikoff, S., Greene, E. A., Pietrokovski, S., Bork, P., Attwood, T. K. & Hood, L.(1997). Gene families: the taxonomy of protein paralogs and chimeras. Science 278, 609–614.[CrossRef] [Google Scholar]
  38. Hightower, R. C. & Meagher, R. B.(1986). The molecular evolution of actin. Genetics 114, 315–332. [Google Scholar]
  39. Hillis, D. M. & Dixon, M. T.(1991). Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66, 411–453.[CrossRef] [Google Scholar]
  40. Hoef-Emden, K., Marin, B. & Melkonian, M.(2002). Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. J Mol Evol 55, 161–179.[CrossRef] [Google Scholar]
  41. Karol, K. G., McCourt, R. M., Cimino, M. T. & Delwiche, C. F.(2001). The closest living relatives of land plants. Science 294, 2351–2353.[CrossRef] [Google Scholar]
  42. Katz, L. A., McManus, G. B., Snoeyenbos-West, O. L. O., Pirog, K., Griffin, A. & Foissner, W.(2004). Reframing the microbial ‘everything is everywhere’ debate: evidence for high gene flow and diversity in ciliate morphospecies. Aquat Microb Ecol 41, 55–65. [Google Scholar]
  43. Kim, O. T., Yura, K., Go, N. & Harumoto, T.(2004). Highly divergent actins from karyorelictean, heterotrich, and litostome ciliates. J Eukaryot Microbiol 51, 227–233.[CrossRef] [Google Scholar]
  44. Koch, T. A. & Ekelund, F.(2005). Strains of the heterotrophic flagellate Bodo designis from different environments vary considerably with respect to salinity preference and SSU rRNA gene composition. Protist 156, 97–112.[CrossRef] [Google Scholar]
  45. Kondrashov, F. A., Rogozin, I. B., Wolf, Y. I. & Koonin, E. V.(2002). Selection in the evolution of gene duplications. Genome Biol 3 [Google Scholar]
  46. Lajeunesse, T. C.(2005). “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22, 570–581. [Google Scholar]
  47. Lowe, C. D., Day, A., Kemp, S. J. & Montagnes, D. J. S.(2005). There are high levels of functional and genetic diversity in Oxyrrhis marina. J Eukaryot Microbiol 52, 250–257.[CrossRef] [Google Scholar]
  48. Machelon, V., Genermont, J. & Dattee, Y.(1984). A biometrical analysis of morphological variation within a section of the genus Euplotes (ciliata, hypotrichida), with special reference to the E. vannus complex of sibling species. Orig Life Evol Biosph 13, 249–267.[CrossRef] [Google Scholar]
  49. Maddison, W. P.(1997). Gene trees in species trees. Syst Biol 46, 523–536.[CrossRef] [Google Scholar]
  50. Maddison, W. P. & Maddison, D. R.(1992). MacClade: analysis of phylogeny and character evolution. Sunderland, MA: Sinauer Associates.
  51. Mallatt, J. & Winchell, C. J.(2002). Testing the new animal phylogeny: first use of combined large-subunit and small-subunit rRNA gene sequences to classify the protostomes. Mol Biol Evol 19, 289–301.[CrossRef] [Google Scholar]
  52. Massana, R., Castresana, J., Balague, V., Guillou, L., Romari, K., Groisillier, A., Valentin, K. & Pedros-Alio, C.(2004). Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70, 3528–3534.[CrossRef] [Google Scholar]
  53. Medlin, L., Elwood, H. J., Stickel, S. & Sogin, M. L.(1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71, 491–499.[CrossRef] [Google Scholar]
  54. Medlin, L., Lange, M. & Baumann, M.(1994). Genetic differentiation among three colony-forming species of Phaeocystis: further evidence for the phylogeny of the Prymnesiophyta. Phycologia 33, 199–212.[CrossRef] [Google Scholar]
  55. Montresor, M., Lovejoy, C., Orsini, L. & Procaccini, G.(2003). Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol 26, 186–194. [Google Scholar]
  56. Nanney, D. L.(2004). No trivial pursuit. Bioscience 54, 720–721.[CrossRef] [Google Scholar]
  57. Nishi, A., Ishida, K. & Endoh, H.(2005). Reevaluation of the evolutionary position of opalinids based on 18S rDNA, and alpha- and beta-tubulin gene phylogenies. J Mol Evol 60, 695–705.[CrossRef] [Google Scholar]
  58. Nozaki, H., Misawa, K., Kajita, T., Kato, M., Nohara, S. & Watanabe, M. M.(2000). Origin and evolution of the colonial volvocales (Chlorophyceae) as inferred from multiple, chloroplast gene sequences. Mol Phylogenet Evol 17, 256–268.[CrossRef] [Google Scholar]
  59. Parfrey, L. W., Barbero, E., Lasser, E., Dunthorn, M., Bhattacharya, D., Patterson, D. J. & Katz, L. A.(2006). Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2, e220[CrossRef] [Google Scholar]
  60. Pelandakis, M., Serre, S. & Pernin, P.(2000). Analysis of the 5.8S rRNA gene and the internal transcribed spacers in Naegleria spp. and in N. fowleri. J Eukaryot Microbiol 47, 116–121.[CrossRef] [Google Scholar]
  61. Philippe, H. & Adoutte, A.(1996). The molecular phylogeny of protozoa: solid facts and uncertainties. In Evolutionary Relationships among Protozoa, pp. 25–52. Edited by G. H. Coombs, K. Vickerman, M. A. Sleigh & A. Warren. London: Kluwer Academic.
  62. Philippe, H., Lopez, P., Brinkmann, H., Budin, K., Germot, A., Laurent, J., Moreira, D., Müller, M. & Le Guyader, H.(2000). Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc Biol Sci 267, 1213–1221.[CrossRef] [Google Scholar]
  63. Poe, S. & Swofford, D. L.(1999). Taxon sampling revisited. Nature 398, 299–300. [Google Scholar]
  64. Posada, D. & Crandall, K. A.(2001). Selecting the best-fit model of nucleotide substitution. Syst Biol 50, 580–601.[CrossRef] [Google Scholar]
  65. Reece, K. S., McElroy, D. & Wu, R.(1992). Function and evolution of actins. Evol Biol 26, 1–34. [Google Scholar]
  66. Richards, T. A., Vepritskiy, A. A., Guliamova, D. E. & Nierzwicki-Bauer, S. A.(2005). The molecular diversity of freshwater picoeukaryotes from an oligotrophic lake reveals diverse, distinctive and globally dispersed lineages. Environ Microbiol 7, 1413–1425.[CrossRef] [Google Scholar]
  67. Rodriguez, F., Derelle, E., Guillou, L., Le Gall, F., Vaulot, D. & Moreau, H.(2005). Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7, 853–859.[CrossRef] [Google Scholar]
  68. Ronquist, F. & Huelsenbeck, J. P.(2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef] [Google Scholar]
  69. Rosselló-Mora, R. & Amann, R.(2001). The species concept for prokaryotes. FEMS Microbiol Rev 25, 39–67.[CrossRef] [Google Scholar]
  70. Sanderson, M. J. & Shaffer, H. B.(2002). Troubleshooting molecular phylogenetic analyses. Annu Rev Ecol Syst 33, 49–72.[CrossRef] [Google Scholar]
  71. Scheckenbach, F., Wylezich, C., Mylnikov, A. P., Weitere, M. & Arndt, H.(2006). Molecular comparisons of freshwater and marine isolates of the same morphospecies of heterotrophic flagellates. Appl Environ Microbiol 72, 6638–6643.[CrossRef] [Google Scholar]
  72. Schlegel, M. & Meisterfeld, R.(2003). The species problem in protozoa revisited. Eur J Protistol 39, 349–355.[CrossRef] [Google Scholar]
  73. Schmidt, S. L., Bernhard, D., Schlegel, M. & Fried, J.(2006). Fluorescence in situ hybridization with specific oligonucleotide rRNA probes distinguishes the sibling species Stylonychia lemnae and Stylonychia mytilus (Ciliophora, Spirotrichea). Protist 157, 21–30.[CrossRef] [Google Scholar]
  74. Shalchian-Tabrizi, K., Eikrem, W., Klaveness, D., Vaulot, D., Minge, M. A., Le Gall, F., Romari, K., Throndsen, J., Botnen, A. & other authors(2006a).Telonemia, a new protist phylum with affinity to chromist lineages. Proc Biol Sci 273, 1833–1842.[CrossRef] [Google Scholar]
  75. Shalchian-Tabrizi, K., Minge, M. A., Cavalier-Smith, T., Nedreklepp, J. M., Klaveness, D. & Jakobsen, K. S.(2006b). Combined heat shock protein 90 and ribosomal RNA sequence phylogeny supports multiple replacements of dinoflagellate plastids. J Eukaryot Microbiol 53, 217–224.[CrossRef] [Google Scholar]
  76. Sherr, E. B. & Sherr, B. F.(1994). Bacterivory and herbivory: key roles of phagotrophic protists in pelagic food webs. Microb Ecol 28, 223–235.[CrossRef] [Google Scholar]
  77. Slapeta, J., Lopez-Garcia, P. & Moreira, D.(2006). Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23, 23–29. [Google Scholar]
  78. Swofford, D. L.(2002).paup*: Phylogenetic Analysis using Parsimony (and other methods). Sunderland, MA: Sinauer Associates.
  79. Tsuchiya, M., Kitazato, H. & Pawlowski, J.(2003). Analysis of internal transcribed spacer of ribosomal DNA reveals cryptic speciation in Planoglabratella opercularis. J Foraminiferal Res 33, 285–293.[CrossRef] [Google Scholar]
  80. van Hoek, A. H., van Alen, T. A., Sprakel, V. S., Hackstein, J. H. & Vogels, G. D.(1998). Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. Mol Biol Evol 15, 1195–1206.[CrossRef] [Google Scholar]
  81. von der Heyden, S. & Cavalier-Smith, T.(2005). Culturing and environmental DNA sequencing uncover hidden kinetoplastid biodiversity and a major marine clade within ancestrally freshwater Neobodo designis. Int J Syst Evol Microbiol 55, 2605–2621.[CrossRef] [Google Scholar]
  82. von der Heyden, S., Chao, E. E., Vickerman, K. & Cavalier-Smith, T.(2004). Ribosomal RNA phylogeny of bodonid and diplonemid flagellates and the evolution of euglenozoa. J Eukaryot Microbiol 51, 402–416.[CrossRef] [Google Scholar]
  83. Weitere, M. & Arndt, H.(2002). Water discharge-regulated bacteria/heterotrophic nanoflagellate (HNF) interactions in the water column of the river Rhine. Microb Ecol 44, 19–29.[CrossRef] [Google Scholar]
  84. Weitere, M. & Arndt, H.(2003). Structure of the heterotrophic flagellate community in the water column of the river Rhine (Germany). Eur J Protistol 39, 287–300.[CrossRef] [Google Scholar]
  85. White, T. J., Bruns, T., Lee, S. & Taylor, J.(1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: a Guide to Methods and Applications, pp. 315–322. Edited by M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White. San Diego: Academic Press.
  86. Zhao, Y., Yu, Y., Feng, W. & Shen, Y.(2003). Growth and production of free-living heterotrophic nanoflagellates in a eutrophic lake – Lake Donghu, Wuhan, China. Hydrobiologia 498, 85–95.[CrossRef] [Google Scholar]

Data & Media loading...


GenBank accession numbers of genes sequenced in this study. [PDF](11 KB)


[PDF file of Supplementary Figs S1-S6](33 KB)

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error