1887

Abstract

A novel moderately halophilic bacterium belonging to the genus was isolated from brine samples collected from Ezzemoul sabkha in north-eastern Algeria. The cells of strain 5-3 were Gram-negative, rod-shaped and non-motile. The strain was catalase- and oxidase-positive and produced an exopolysaccharide. Growth occurred at NaCl concentrations of 5–25 % (optimum at 7.5 %), at 30–50 °C (optimum at 37–40 °C) and at pH 6.0–9.0 (optimum at pH 7.5). The major fatty acids were C 3-OH, C 7/iso-C 2-OH, C, C 7 and C 8 cyclo. The G+C content of the genomic DNA was 57.0 mol% ( ). The affiliation of strain 5-3 with the genus was confirmed by 16S rRNA gene sequence comparisons. The most closely related species was , which showed a 16S rRNA gene sequence similarity of 99.7 %. However, the level of DNA–DNA relatedness between the novel isolate and the related species was less than 31.4 %. On the basis of the data from this polyphasic study, strain 5-3 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 5-3 (=CECT 7246=DSM 19122=LMG 24084).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65307-0
2008-01-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/1/40.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65307-0&mimeType=html&fmt=ahah

References

  1. Arahal, D. R., Castillo, A. M., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002a; ). Proposal of Cobetia marina gen. nov., comb. nov., within the family Halomonadaceae, to include the species Halomonas marina. Syst Appl Microbiol 25, 207–211.[CrossRef]
    [Google Scholar]
  2. Arahal, D. R., Ludwig, W., Schleifer, K. H. & Ventosa, A. ( 2002b; ). Phylogeny of the family Halomonadaceae based on 23S and 16S rRNA gene sequence analyses. Int J Syst Evol Microbiol 52, 241–249.
    [Google Scholar]
  3. Dobson, S. J. & Franzmann, P. D. ( 1996; ). Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int J Syst Bacteriol 46, 550–558.[CrossRef]
    [Google Scholar]
  4. Dobson, S. J., James, S. R., Franzmann, P. D. & McMeekin, T. A. ( 1990; ). Emended description of Halomonas halmophila (NCMB 1971T). Int J Syst Bacteriol 40, 462–463.[CrossRef]
    [Google Scholar]
  5. Dussault, H. P. ( 1955; ). An improved technique for staining red halophilic bacteria. J Bacteriol 70, 484–485.
    [Google Scholar]
  6. Fendrich, C. ( 1988; ). Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid Eubacterium from Great Salt Lake, Utah. Syst Appl Microbiol 11, 36–43.[CrossRef]
    [Google Scholar]
  7. Ferragut, C. & Leclerc, H. ( 1976; ). Étude comparative des méthodes de détermination du T m de l'ADN bactérien. Ann Microbiol (Paris) 127, 223–235.
    [Google Scholar]
  8. Franzmann, P. D., Burton, H. R. & McMeekin, T. A. ( 1987; ). Halomonas subglaciescola sp. nov., a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 37, 27–34.[CrossRef]
    [Google Scholar]
  9. Franzmann, P. D., Wehmeyer, U. & Stackebrandt, E. ( 1988; ). Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya. Syst Appl Microbiol 11, 16–19.[CrossRef]
    [Google Scholar]
  10. Garriga, M., Ehrmann, M. A., Arnau, J., Hugas, M. & Vogel, R. F. ( 1998; ). Carnimonas nigrificans gen. nov., sp. nov., a bacterial causative agent for black spot formation on cured meat products. Int J Syst Bacteriol 48, 677–686.[CrossRef]
    [Google Scholar]
  11. Kaye, J. Z., Márquez, M. C., Ventosa, A. & Barros, J. A. ( 2004; ). Halomonas neptunia sp. nov., Halomonas axialensis sp. nov. and Halomonas hydrothermalis sp. nov.: halophilic bacteria isolated from deep-sea hydrothermal-vent environments. Int J Syst Evol Microbiol 54, 499–511.[CrossRef]
    [Google Scholar]
  12. Kharroub, K., Aguilera, M., Quesada, T., Morillo, J. M., Ramos-Cormenzana, A., Boulahrouf, A. & Monteoliva-Sanchez, M. ( 2006; ). Salicola salis sp. nov., an extremely halophilic bacterium isolated from Ezzemoul sabkha in Algeria. Int J Syst Evol Microbiol 56, 2647–2652.[CrossRef]
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  15. Larpent, J.-P. & Larpent-Gourgaud, M. ( 1985; ). Manuel Pratique de Microbiologie. Paris: Hermann.
  16. Lind, E. & Ursing, J. ( 1986; ). Clinical strains of Enterobacter agglomerans (synonyms Erwinia herbicola, Erwinia milletiae) identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand [B] 94, 205–213.
    [Google Scholar]
  17. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  18. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  19. Martinez-Cánovas, M. J., Béjar, V., Martinez-Checa, F. & Quesada, E. ( 2004; ). Halomonas anticariensis sp. nov., from Fuente de Piedra, a saline-wetland wildfowl reserve in Málga, southern Spain. Int J Syst Evol Microbiol 54, 1329–1332.[CrossRef]
    [Google Scholar]
  20. Martinez-Checa, F., Béjar, V., Martinez-Cánovas, J., Liama, I. & Quesada, E. ( 2005; ). Halomonas almeriensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium from Cabo de Gata, Almeria, south-east Spain. Int J Syst Evol Microbiol 55, 2007–2011.[CrossRef]
    [Google Scholar]
  21. Mata, J. A., Martinez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterization of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  22. Okamoto, T., Taguchi, H., Nakamura, K., Ikenaga, H., Kuraishi, H. & Yamasato, K. ( 1993; ). Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160, 333–337.
    [Google Scholar]
  23. Oren, A., Gurevich, P., Gemmel, R. T. & Teske, A. ( 1995; ). Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from the Dead Sea. Int J Syst Bacteriol 45, 747–754.[CrossRef]
    [Google Scholar]
  24. Owen, R. J. & Hill, L. R. ( 1979; ). The estimation of base compositions, base pairing and genome sizes of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists (Society for Applied Bacteriology Technical Series no. 14), 2nd edn, pp. 277–296. Edited by F. A. Skinner & D. W. Lovelock. London: Academic Press.
  25. Poli, A., Esposito, E., Pierangelo, O., Lama, L., Giordano, A., de Appolonia, F., Nicolaus, B. & Gambacorta, A. ( 2007; ). Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol 30, 31–38.[CrossRef]
    [Google Scholar]
  26. Quillaguamán, J., Hatti-Kaul, R., Mattiasson, B., Alvarez, M. T. & Delgado, O. ( 2004; ). Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile isolated from soil around a Bolivian hypersaline lake. Int J Syst Evol Microbiol 54, 721–725.[CrossRef]
    [Google Scholar]
  27. Reddy, G. S. N., Raghavan, P. U. M., Sarita, N. B., Prakash, J. S. S., Nagesh, N., Delille, D. & Shivaji, S. ( 2003; ). Halomonas glaciei sp. nov. isolated from fast ice of Adelie Land, Antarctica. Extremophiles 7, 55–61.
    [Google Scholar]
  28. Rodriguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1981; ). Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb Ecol 7, 235–243.[CrossRef]
    [Google Scholar]
  29. Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. & Erlich, H. A. ( 1988; ). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491.[CrossRef]
    [Google Scholar]
  30. Smibert, R. M. & Krieg, N. R. ( 1981; ). General Characterization. In Manual of Methods for General Bacteriology, pp. 409–443. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. D. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  31. Subov, N. N. ( 1931; ). Oceanographical Tables. Moscow: USSR Oceanographic Institute Hydrometeorological Commission.
  32. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  33. Ventosa, A., Gutierrez, M. C., Garcia, M. T. & Ruiz-Berraquero, F. ( 1989; ). Classification of “Chromobacterium marismortui” in a new genus, Chromohalobacter gen. nov., as Chromohalobacter marismortui comb. nov., nom. rev. Int J Syst Bacteriol 39, 382–386.[CrossRef]
    [Google Scholar]
  34. Vreeland, R. H., Litchfield, C. D., Martín, E. L. & Elliot, E. ( 1980; ). Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30, 486–495.
    [Google Scholar]
  35. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65307-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65307-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 40 - 44

Maximum-parsimony phylogenetic tree, based on 16S rRNA gene sequences, showing relationships between strain 5-3 and species of the genus plus other taxa comprising Gram-negative, halophilic bacteria. [ PDF] (31 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error