1887

Abstract

Four Gram-positive, non-motile, non-spore-forming bacterial strains, LC4, LC6, LC10 and LC13, were isolated from a filtration substrate made from trass, a volcanic rock, and their taxonomic positions were investigated by a polyphasic taxonomic approach. The novel strains grew over a temperature range of 5–40 °C, at pH values of 6–11 and in the presence of 3–7 % (w/v) NaCl. A phylogenetic tree based on 16S rRNA gene sequences showed the novel strains formed a distinct evolutionary lineage within the genus . Chemotaxonomic analyses demonstrated that the major menaquinone was MK-9(H), a menaquinone typical of the group. The major fatty acid was anteiso-C and the major amino acid present in the cell-wall peptidoglycan was -lysine. These observations supported the affiliation of the novel strains to the genus . On the basis of their morphological, physiological and genotypic characteristics, the new isolates are considered to represent four novel species of the genus , for which the names sp. nov. (type strain LC4=IAM 15382=CCTCC AB 206012), sp. nov. (type strain LC6=IAM 15383=CCTCC AB 206013), sp. nov. (type strain LC10=IAM 15385=CCTCC AB 206017) and sp. nov. (type strain LC13=IAM 15386=CCTCC AB 206018) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65301-0
2009-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/4/856.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65301-0&mimeType=html&fmt=ahah

References

  1. Borodina, E., Kelly, D. P., Schumann, P., Rainey, F. A., Ward-Rainey, N. L. & Wood, A. P. ( 2002; ). Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp. nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177, 173–183.[CrossRef]
    [Google Scholar]
  2. Carter, J. P., Hsiao, Y. H., Spiro, S. & Richardson, D. J. ( 1995; ). Soil and sediment bacteria capable of aerobic nitrate respiration. Appl Environ Microbiol 61, 2852–2858.
    [Google Scholar]
  3. Conn, H. J. & Dimmick, I. ( 1947; ). Soil bacteria similar in morphology to Mycobacterium and Corynebacterium. J Bacteriol 54, 291–303.
    [Google Scholar]
  4. Ding, L. & Yokota, A. ( 2002; ). Phylogenetic analysis of the genus Aquaspirillum based on 16S rRNA gene sequences. FEMS Microbiol Lett 212, 165–169.[CrossRef]
    [Google Scholar]
  5. Ding, L. & Yokota, A. ( 2004; ). Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int J Syst Evol Microbiol 54, 2223–2230.[CrossRef]
    [Google Scholar]
  6. Duarte, G. F., Rosado, A. S., Seldin, L., de Araujo, W. & van Elsas, J. D. ( 2001; ). Analysis of bacterial community structure in sulfurous-oil-containing soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl Environ Microbiol 67, 1052–1062.[CrossRef]
    [Google Scholar]
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  10. Fukatsu, H., Goda, M., Hashimoto, Y., Higashibata, H. & Kobayashi, M. ( 2005; ). Optimum culture conditions for the production of N-substituted formamide deformylase by Arthrobacter pascens F164. Biosci Biotechnol Biochem 69, 228–230.[CrossRef]
    [Google Scholar]
  11. Harper, J. J. & Davis, G. H. G. ( 1979; ). Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. Int J Syst Bacteriol 29, 56–58.[CrossRef]
    [Google Scholar]
  12. Heyrman, J., Verbeeren, J., Schumann, P., Swings, J. & Paul, D. V. ( 2005; ). Six novel Arthrobacter species isolated from deteriorated mural paintings. Int J Syst Evol Microbiol 55, 1457–1464.[CrossRef]
    [Google Scholar]
  13. Jussila, M. M., Jurgens, G., Lindstrom, K. & Suominen, L. ( 2006; ). Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis. Environ Pollut 139, 244–257.[CrossRef]
    [Google Scholar]
  14. Keddie, R. M., Collins, M. D. & Jones, D. ( 1984; ). Genus Arthrobacter Conn and Dimmick 1974, 300AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 1288–1301. Edited by N. R. Klieg & J. G. Holt. Baltimore, MD: Williams & Wilkins.
  15. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  16. Koch, C., Schmann, P. & Stackebrandt, E. ( 1995; ). Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter. Int J Syst Bacteriol 45, 837–839.[CrossRef]
    [Google Scholar]
  17. Kuhn, D. A. & Starr, M. P. ( 1960; ). Arthrobacter atrocyaneus, n. sp., and its blue pigment. Arch Mikrobiol 36, 175–181.[CrossRef]
    [Google Scholar]
  18. Li, Y., Kawamura, Y., Fujiwara, N., Naka, T., Liu, H., Huang, X., Kobayashi, K. & Ezaki, T. ( 2004; ). Rothia aeria sp. nov., Rhodococcus baikonurensis sp. nov. and Arthrobacter russicus sp. nov., isolated from air in the Russian space laboratory Mir. Int J Syst Evol Microbiol 54, 827–835.[CrossRef]
    [Google Scholar]
  19. Margesin, R., Schumann, P., Spröer, C. & Gounot, A. M. ( 2004; ). Arthrobacter psychrophenolicus sp. nov., isolated from an alpine ice cave. Int J Syst Evol Microbiol 54, 2067–2072.[CrossRef]
    [Google Scholar]
  20. Marks, T. S., Smith, A. R. & Quirk, A. V. ( 1984; ). Degradation of 4-chlorobenzoic acid by Arthrobacter sp. Appl Environ Microbiol 48, 1020–1025.
    [Google Scholar]
  21. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  22. Rzechowska, E. ( 1976; ). Studies on the biodegradation of nonionic surfactants applied in the polyester fiber industry. I. Activated sludge bacteria degrading the surfactants. Acta Microbiol Pol 25, 211–217.
    [Google Scholar]
  23. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  24. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  25. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note, 101. Newark, DE: MIDI Inc.
  26. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  27. Sguros, P. L. ( 1955; ). Microbial transformations of the tobacco alkaloids. I. Cultural and morphological characteristics of a nicotinophile. J Bacteriol 69, 28–37.
    [Google Scholar]
  28. Singer, A. C., Gilbert, E. S., Luepromchai, E. & Crowley, D. E. ( 2000; ). Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biotechnol 54, 838–843.[CrossRef]
    [Google Scholar]
  29. Skerman, V. B. D., McGowan, V. & Sneath, P. H. A. (editors) 1980; ). Approved lists of bacterial names. Int J Syst Bacteriol 30, 225–420.[CrossRef]
    [Google Scholar]
  30. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  31. Stackebrandt, E., Fowler, V. J., Fiedler, F. & Seiler, H. ( 1983; ). Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 4, 470–486.[CrossRef]
    [Google Scholar]
  32. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  33. Takeuchi, M. & Yokota, A. ( 1991; ). Reclassification of strains of Flavobacterium-Cytophaga group in IFO culture collection. Inst Ferment Osaka Res Commun 15, 83–96.
    [Google Scholar]
  34. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  35. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  36. Westerberg, K., Elvang, A. M., Stackebrandt, E. & Jansson, J. K. ( 2000; ). Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50, 2083–2092.[CrossRef]
    [Google Scholar]
  37. Willems, A., Doignon, B. F., Goris, J., Coopman, R., Lajudie, P., Vos, D. P. & Gillis, M. ( 2001; ). DNA-DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65301-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65301-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error