1887

Abstract

A Gram-positive, ovoid lactic acid bacterium, strain LMG 23990, was isolated from Ethiopian coffee fermentation. 16S rRNA gene sequence analysis indicated that the novel strain belongs to the genus , with and as the closest neighbours (99.6 and 99.0 % 16S rRNA gene sequence similarity, respectively). Genotypic fingerprinting by fluorescent amplified fragment length polymorphism, whole-cell protein electrophoresis, DNA–DNA hybridizations, comparative sequence analysis of , , , and physiological and biochemical tests allowed us to differentiate strain LMG 23990 from all established species. Strain LMG 23990 (=CCUG 54536) therefore represents a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65292-0
2007-12-01
2020-09-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2952.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65292-0&mimeType=html&fmt=ahah

References

  1. Antunes A., Rainey F. A., Nobre M. F., Schumann P., Ferreira A. M., Ramos A., Santos H., da Costa M. S. 2002; Leuconostoc ficulneum sp nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int J Syst Evol Microbiol 52:647–655
    [Google Scholar]
  2. Arunga R. O. 1973; Enzymatic fermentation of coffee. Kenya Coffee 38:354–357
    [Google Scholar]
  3. Björkroth J., Korkeala H. 1996; Evaluation of Lactobacillus sake contamination in vacuum-packaged sliced cooked meat products by ribotyping. J Food Prot 59:2854–2858
    [Google Scholar]
  4. Björkroth K. J., Geisen R., Schillinger U., Weiss N., De Vos P., Holzapfel W. H., Korkeala H. J., Vandamme P. 2000; Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl Environ Microbiol 66:3764–3772 [CrossRef]
    [Google Scholar]
  5. Böhringer B. 2006; Untersuchungen zur Unterscheidung der Gattungen Leuconostoc und Weissella und Identifizierung von Stämmen aus der Lebensmittelfermentation. Diploma Thesis, University of Karlsruhe;
  6. Caroline L. 2005; Untersuchung und Charakterisierung von dominanten Mikroorganismen, die an der Kaffeefermentation beteiligt sind. Diploma Thesis, University of Karlsruhe;
  7. Chambel L., Chelo I. M., Ze-Ze L., Pedro L. G., Santos M. A., Tenreiro R. 2006; Leuconostoc pseudoficulneum sp nov., isolated from a ripe fig. Int J Syst Evol Microbiol 56:1375–1381 [CrossRef]
    [Google Scholar]
  8. Chelo I. M., Zé-Zé L., Tenreiro R. 2007; Congruence of evolutionary relationships inside the Leuconostoc Oenococcus Weissella clade assessed by phylogenetic analysis of the 16S rRNA gene,dnaA , gyrB , rpoC and dnaK . Int J Syst Evol Microbiol 57:276–286 [CrossRef]
    [Google Scholar]
  9. Chenoll E., Macian M. C., Aznar R. 2003; Identification of Carnobacterium, Lactobacillus , Leuconostoc and Pediococcus by rDNA-based techniques. Syst Appl Microbiol 26:546–556 [CrossRef]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  11. de Man J. C., Rogosa M., Sharpe M. E. 1960; A medium for the cultivation of lactobacilli . J Appl Bacteriol 23:130–135 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism , vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Juven B. J., Lindner P., Weisslowicz H. 1985; Pectin degradation in plant material by Leuconostoc mesenteroides . J Appl Bacteriol 58:533–538 [CrossRef]
    [Google Scholar]
  14. Kim J., Chun J., Han H. U. 2000; Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 50:1915–1919
    [Google Scholar]
  15. Kim B., Lee J., Jang J., Kim J., Han H. 2003; Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int J Syst Evol Microbiol 53:1123–1126 [CrossRef]
    [Google Scholar]
  16. Konstantinidis K. T., Ramette A., Tiedje J. M. 2006; Towards a more robust assessment of intra-species diversity using fewer genetic markers. Appl Environ Microbiol 72:7286–7293 [CrossRef]
    [Google Scholar]
  17. Kostinek M., Specht I., Edward V. A., Schillinger U., Hertel C., Holzapfel W. H., Franz C. M. 2005; Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Syst Appl Microbiol 28:527–540 [CrossRef]
    [Google Scholar]
  18. Lee H.-J., Park S.-Y., Kim J. 2000; Multiplex PCR-based detection and identification of Leuconostoc species. FEMS Microbiol Lett 193:243–247 [CrossRef]
    [Google Scholar]
  19. Leisner J. J., Vancanneyt M., Van der Meulen R., Lefebvre K., Engelbeen K., Hoste B., Laursen B. G., Bay L., Rusul G. other authors 2005; Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose. Int J Syst Evol Microbiol 55:1267–1270 [CrossRef]
    [Google Scholar]
  20. Macian M. C., Chenoll E., Aznar R. 2004; Simultaneous detection of Carnobacterium and Leuconostoc in meat products by multiplex PCR. J Appl Microbiol 97:384–394 [CrossRef]
    [Google Scholar]
  21. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  23. Naser S., Thompson F. L., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Thompson C. C., Vancanneyt M., Swings J. 2005a; Phylogeny and identification of Enterococci by atpA gene sequence analysis. J Clin Microbiol 43:2224–2230 [CrossRef]
    [Google Scholar]
  24. Naser S. M., Thompson F. L., Hoste B., Gevers D., Dawyndt P., Vancanneyt M., Swings J. 2005b; Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151:2141–2150 [CrossRef]
    [Google Scholar]
  25. Philippe H., Zhou Y., Brinkmann H., Rodrigue N., Delsuc F. 2005; Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5:50 [CrossRef]
    [Google Scholar]
  26. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidinium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  27. Pot B., Vandamme P., Kersters K. 1994; Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics pp 493–521 Edited by Goodfellow M., O'Donnell A. G. Chichester, UK: Wiley;
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Schillinger U., Lücke F.-K. 1987; Identification of lactobacilli from meat and meat products. Food Microbiol 4:199–208 [CrossRef]
    [Google Scholar]
  30. Stackebrandt E., Kandler O. 1979; Taxonomy of the genus Cellulomonas , based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology and proposal of seven neotype strains. Int J Syst Bacteriol 29:273–282 [CrossRef]
    [Google Scholar]
  31. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A., Kämpfer P., Maiden M. C., Nesme X., Rosselló-Mora R., Swings J. other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  32. Susiluoto T., Korkeala H., Bjorkroth K. J. 2003; Leuconostoc gasicomitatum is the dominating lactic acid bacterium in retail modified-atmosphere-packaged marinated broiler meat strips on sell-by-day. Int J Food Microbiol 80:89–97 [CrossRef]
    [Google Scholar]
  33. Thompson F. L., Hoste B., Vandemeulebroecke K., Swings J. 2001; Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24:520–538 [CrossRef]
    [Google Scholar]
  34. Vancanneyt M., Zamfir M., De Wachter M., Cleenwerck I., Hoste B., Rossi F., Dellaglio F., De Vuyst L., Swings J. 2006; Reclassification of Leuconostoc argentinum as a later synonym of Leuconostoc lactis . Int J Syst Evol Microbiol 56:213–216 [CrossRef]
    [Google Scholar]
  35. Vaughn R. H., De Camargo R., Fallanghe H., Mello-Ayres G., Serzedello A. 1958; Observations on the microbiology of the coffee fermentation in Brazil. Food Technol 12:57–60
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65292-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65292-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error