1887

Abstract

A Gram-positive, ovoid lactic acid bacterium, strain LMG 23990, was isolated from Ethiopian coffee fermentation. 16S rRNA gene sequence analysis indicated that the novel strain belongs to the genus , with and as the closest neighbours (99.6 and 99.0 % 16S rRNA gene sequence similarity, respectively). Genotypic fingerprinting by fluorescent amplified fragment length polymorphism, whole-cell protein electrophoresis, DNA–DNA hybridizations, comparative sequence analysis of , , , and physiological and biochemical tests allowed us to differentiate strain LMG 23990 from all established species. Strain LMG 23990 (=CCUG 54536) therefore represents a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65292-0
2007-12-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2952.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65292-0&mimeType=html&fmt=ahah

References

  1. Antunes, A., Rainey, F. A., Nobre, M. F., Schumann, P., Ferreira, A. M., Ramos, A., Santos, H. & da Costa, M. S. ( 2002; ). Leuconostoc ficulneum sp nov., a novel lactic acid bacterium isolated from a ripe fig, and reclassification of Lactobacillus fructosus as Leuconostoc fructosum comb. nov. Int J Syst Evol Microbiol 52, 647–655.
    [Google Scholar]
  2. Arunga, R. O. ( 1973; ). Enzymatic fermentation of coffee. Kenya Coffee 38, 354–357.
    [Google Scholar]
  3. Björkroth, J. & Korkeala, H. ( 1996; ). Evaluation of Lactobacillus sake contamination in vacuum-packaged sliced cooked meat products by ribotyping. J Food Prot 59, 2854–2858.
    [Google Scholar]
  4. Björkroth, K. J., Geisen, R., Schillinger, U., Weiss, N., De Vos, P., Holzapfel, W. H., Korkeala, H. J. & Vandamme, P. ( 2000; ). Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl Environ Microbiol 66, 3764–3772.[CrossRef]
    [Google Scholar]
  5. Böhringer, B. ( 2006; ). Untersuchungen zur Unterscheidung der Gattungen Leuconostoc und Weissella und Identifizierung von Stämmen aus der Lebensmittelfermentation. Diploma Thesis, University of Karlsruhe.
  6. Caroline, L. ( 2005; ). Untersuchung und Charakterisierung von dominanten Mikroorganismen, die an der Kaffeefermentation beteiligt sind. Diploma Thesis, University of Karlsruhe.
  7. Chambel, L., Chelo, I. M., Ze-Ze, L., Pedro, L. G., Santos, M. A. & Tenreiro, R. ( 2006; ). Leuconostoc pseudoficulneum sp nov., isolated from a ripe fig. Int J Syst Evol Microbiol 56, 1375–1381.[CrossRef]
    [Google Scholar]
  8. Chelo, I. M., Zé-Zé, L. & Tenreiro, R. ( 2007; ). Congruence of evolutionary relationships inside the LeuconostocOenococcusWeissella clade assessed by phylogenetic analysis of the 16S rRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol 57, 276–286.[CrossRef]
    [Google Scholar]
  9. Chenoll, E., Macian, M. C. & Aznar, R. ( 2003; ). Identification of Carnobacterium, Lactobacillus, Leuconostoc and Pediococcus by rDNA-based techniques. Syst Appl Microbiol 26, 546–556.[CrossRef]
    [Google Scholar]
  10. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  11. de Man, J. C., Rogosa, M. & Sharpe, M. E. ( 1960; ). A medium for the cultivation of lactobacilli. J Appl Bacteriol 23, 130–135.[CrossRef]
    [Google Scholar]
  12. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  13. Juven, B. J., Lindner, P. & Weisslowicz, H. ( 1985; ). Pectin degradation in plant material by Leuconostoc mesenteroides. J Appl Bacteriol 58, 533–538.[CrossRef]
    [Google Scholar]
  14. Kim, J., Chun, J. & Han, H. U. ( 2000; ). Leuconostoc kimchii sp. nov., a new species from kimchi. Int J Syst Evol Microbiol 50, 1915–1919.
    [Google Scholar]
  15. Kim, B., Lee, J., Jang, J., Kim, J. & Han, H. ( 2003; ). Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int J Syst Evol Microbiol 53, 1123–1126.[CrossRef]
    [Google Scholar]
  16. Konstantinidis, K. T., Ramette, A. & Tiedje, J. M. ( 2006; ). Towards a more robust assessment of intra-species diversity using fewer genetic markers. Appl Environ Microbiol 72, 7286–7293.[CrossRef]
    [Google Scholar]
  17. Kostinek, M., Specht, I., Edward, V. A., Schillinger, U., Hertel, C., Holzapfel, W. H. & Franz, C. M. ( 2005; ). Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Syst Appl Microbiol 28, 527–540.[CrossRef]
    [Google Scholar]
  18. Lee, H.-J., Park, S.-Y. & Kim, J. ( 2000; ). Multiplex PCR-based detection and identification of Leuconostoc species. FEMS Microbiol Lett 193, 243–247.[CrossRef]
    [Google Scholar]
  19. Leisner, J. J., Vancanneyt, M., Van der Meulen, R., Lefebvre, K., Engelbeen, K., Hoste, B., Laursen, B. G., Bay, L., Rusul, G. & other authors ( 2005; ). Leuconostoc durionis sp. nov., a heterofermenter with no detectable gas production from glucose. Int J Syst Evol Microbiol 55, 1267–1270.[CrossRef]
    [Google Scholar]
  20. Macian, M. C., Chenoll, E. & Aznar, R. ( 2004; ). Simultaneous detection of Carnobacterium and Leuconostoc in meat products by multiplex PCR. J Appl Microbiol 97, 384–394.[CrossRef]
    [Google Scholar]
  21. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  22. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  23. Naser, S., Thompson, F. L., Hoste, B., Gevers, D., Vandemeulebroecke, K., Cleenwerck, I., Thompson, C. C., Vancanneyt, M. & Swings, J. ( 2005a; ). Phylogeny and identification of Enterococci by atpA gene sequence analysis. J Clin Microbiol 43, 2224–2230.[CrossRef]
    [Google Scholar]
  24. Naser, S. M., Thompson, F. L., Hoste, B., Gevers, D., Dawyndt, P., Vancanneyt, M. & Swings, J. ( 2005b; ). Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 151, 2141–2150.[CrossRef]
    [Google Scholar]
  25. Philippe, H., Zhou, Y., Brinkmann, H., Rodrigue, N. & Delsuc, F. ( 2005; ). Heterotachy and long-branch attraction in phylogenetics. BMC Evol Biol 5, 50 [CrossRef]
    [Google Scholar]
  26. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidinium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  27. Pot, B., Vandamme, P. & Kersters, K. ( 1994; ). Analysis of electrophoretic whole-organism protein fingerprints. In Chemical Methods in Prokaryotic Systematics, pp. 493–521. Edited by M. Goodfellow & A. G. O'Donnell. Chichester, UK: Wiley.
  28. Saitou, N. & Nei, M. ( 1987; ). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  29. Schillinger, U. & Lücke, F.-K. ( 1987; ). Identification of lactobacilli from meat and meat products. Food Microbiol 4, 199–208.[CrossRef]
    [Google Scholar]
  30. Stackebrandt, E. & Kandler, O. ( 1979; ). Taxonomy of the genus Cellulomonas, based on phenotypic characters and deoxyribonucleic acid-deoxyribonucleic acid homology and proposal of seven neotype strains. Int J Syst Bacteriol 29, 273–282.[CrossRef]
    [Google Scholar]
  31. Stackebrandt, E., Frederiksen, W., Garrity, G. M., Grimont, P. A., Kämpfer, P., Maiden, M. C., Nesme, X., Rosselló-Mora, R., Swings, J. & other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  32. Susiluoto, T., Korkeala, H. & Bjorkroth, K. J. ( 2003; ). Leuconostoc gasicomitatum is the dominating lactic acid bacterium in retail modified-atmosphere-packaged marinated broiler meat strips on sell-by-day. Int J Food Microbiol 80, 89–97.[CrossRef]
    [Google Scholar]
  33. Thompson, F. L., Hoste, B., Vandemeulebroecke, K. & Swings, J. ( 2001; ). Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24, 520–538.[CrossRef]
    [Google Scholar]
  34. Vancanneyt, M., Zamfir, M., De Wachter, M., Cleenwerck, I., Hoste, B., Rossi, F., Dellaglio, F., De Vuyst, L. & Swings, J. ( 2006; ). Reclassification of Leuconostoc argentinum as a later synonym of Leuconostoc lactis. Int J Syst Evol Microbiol 56, 213–216.[CrossRef]
    [Google Scholar]
  35. Vaughn, R. H., De Camargo, R., Fallanghe, H., Mello-Ayres, G. & Serzedello, A. ( 1958; ). Observations on the microbiology of the coffee fermentation in Brazil. Food Technol 12, 57–60.
    [Google Scholar]
  36. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65292-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65292-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2952 - 2959

Phylogenetic tree based on neighbour-joining method using gene (295–412 nt) sequences of strains

Phylogenetic tree based on neighbour-joining method using gene (402–745 nt) sequences of strains

Phylogenetic tree based on neighbour-joining method using gene (499–1033 nt) sequences of strains

Phylogenetic tree based on maximum-parsimony calculations using gene (295–412 nt) sequences of strains

Phylogenetic tree based on maximum-parsimony calculations using gene (402–745 nt) sequences of strains

Phylogenetic tree based on maximum-parsimony calculations using gene (499–1033 nt) sequences of strains [Single PDF file](1941 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error