1887

Abstract

A Gram-positive, aerobic, non-mycelium-forming actinomycete, designated strain SSWW-21, was isolated from a living seaweed sample on the coast of Jeju, Republic of Korea. Cells of the organism were rod-shaped or coccoid depending on culture age. Short rods were observed in young cultures, whereas older cultures predominantly consisted of coccoid cells. Rod-shaped cells were motile by means of flagella, but coccoid cells were non-motile. Budding-like cell division was observed. The temperature and pH for growth were 4–30 °C and pH 6.1–10.1. Growth occurred in the presence of up to 2 % NaCl. Phylogenetic analyses showed that the organism formed a distinct clade within the family . Comparative 16S rRNA gene sequence analyses showed that strain SSWW-21 was related most closely to the type strains of (96.8 % similarity), (96.8 %) and (96.6 %). Levels of 16S rRNA gene sequence similarity between the new isolate and members of other genera within the family were in the range 93.1–96.3 %. The cell-wall peptidoglycan of strain SSWW-21 was of the B-type (2,4-diaminobutyric acid as the diagnostic diamino acid). The acyl type of the muramic acid was acetyl. The predominant menaquinone was MK-11. The polar lipid profile contained phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and diphosphatidylglycerol. Mycolic acids were not present. The major cellular fatty acids were saturated branched-chain components (anteiso-C and anteiso-C). The G+C content of the DNA was 69.8 mol%. On the basis of the phenotypic and phylogenetic data presented, strain SSWW-21 is considered to represent a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is SSWW-21 (=KCTC 19185 =DSM 18319).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65283-0
2008-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/6/1318.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65283-0&mimeType=html&fmt=ahah

References

  1. Evtushenko, L. I., Dorofeeva, L. V., Subbotin, S. A., Cole, J. R. & Tiedje, J. M. ( 2000; ). Leifsonia poae gen. nov., sp. nov., isolated from nematode galls on Poa annua, and reclassification of ‘Corynebacterium aquaticum’ Leifson 1962 as Leifsonia aquatica (ex Leifson 1962) gen. nov., nom. rev., comb. nov. and Clavibacter xyli Davis et al. 1984 with two subspecies as Leifsonia xyli (Davis et al. 1984) gen. nov., comb. nov. Int J Syst Evol Microbiol 50, 371–380.[CrossRef]
    [Google Scholar]
  2. Evtushenko, L. I., Dorofeeva, L. V., Dobrovolskaya, T. G., Streshinskaya, G. M., Subbotin, S. A. & Tiedie, J. M. ( 2001; ). Agreia bicolorata gen. nov., sp. nov., to accommodate actinobacteria isolated from narrow reed grass infected by the nematode Heteroanguina graminophila. Int J Syst Evol Microbiol 51, 2073–2079.[CrossRef]
    [Google Scholar]
  3. Evtushenko, L. I., Dorofeeva, L. V., Krausova, V. I., Gavrish, E. Y., Yashina, S. G. & Takeuchi, M. ( 2002; ). Okibacterium fritillariae gen. nov., sp. nov., a novel genus of the family Microbacteriaceae. Int J Syst Evol Microbiol 52, 987–993.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  6. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  7. Han, S. K., Nedashkovskaya, O. I., Mikhailov, V. V., Kim, S. B. & Bae, K. S. ( 2003; ). Salinibacterium amurskyense gen. nov., sp. nov., a novel genus of the family Microbacteriaceae from the marine environment. Int J Syst Evol Microbiol 53, 2061–2066.[CrossRef]
    [Google Scholar]
  8. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  9. Kroppenstedt, R. M. ( 1985; ). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics, pp. 173–199. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
  10. Lee, S. D. ( 2006; ). Blastococcus jejuensis sp. nov., an actinomycete from beach sediment, and emended description of the genus Blastococcus Ahrens and Moll 1970. Int J Syst Evol Microbiol 56, 2391–2396.[CrossRef]
    [Google Scholar]
  11. Lee, S. D. ( 2007; ). Labedella gwakjiensis gen. nov., sp. nov., a novel actinomycete of the family Microbacteriaceae. Int J Syst Evol Microbiol 57, 2498–2502.[CrossRef]
    [Google Scholar]
  12. MacKenzie, S. L. ( 1987; ). Gas chromatographic analysis of amino acids as the N-heptafluorobutyryl isobutyl esters. J Assoc Off Anal Chem 70, 151–160.
    [Google Scholar]
  13. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  14. Minnikin, D. E., Patel, P. V., Alshamaony, L. & Goodfellow, M. ( 1977; ). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27, 104–117.[CrossRef]
    [Google Scholar]
  15. Minnikin, D. E., Hutchinson, I. G., Caldicott, A. B. & Goodfellow, M. ( 1980; ). Thin layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr 188, 221–233.[CrossRef]
    [Google Scholar]
  16. Park, Y. H., Suzuki, K., Yim, D. G., Lee, K. C., Kim, E., Yoon, J., Kim, S., Kho, Y. H., Goodfellow, M. & other authors ( 1993; ). Suprageneric classification of peptidoglycan group B actinomycetes by nucleotide sequencing of 5S ribosomal RNA. Antonie van Leeuwenhoek 94, 307–313.
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  19. Schumann, P., Behrendt, U., Ulrich, A. & Suzuki, K. ( 2003; ). Reclassification of Subtercola pratensis (Behrendt et al. 2002) as Agreia pratensis comb. nov. Int J Syst Evol Microbiol 53, 2041–2044.[CrossRef]
    [Google Scholar]
  20. Shirling, E. B. & Gottlieb, D. ( 1966; ). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16, 313–340.[CrossRef]
    [Google Scholar]
  21. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L. ( 1997; ). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef]
    [Google Scholar]
  22. Suzuki, K., Suzuki, M., Sasaki, J., Park, Y.-H. & Komagata, K. ( 1999; ). Leifsonia gen. nov., a genus for 2,4-diaminobutyric acid-containing actinomycetes to accommodate “Corynebacterium aquaticum” Leifson 1962 and Clavibacter xyli subsp. cynodontis Davis et al. 1984. J Gen Appl Microbiol 45, 253–262.[CrossRef]
    [Google Scholar]
  23. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  24. Tiago, I., Pires, C., Mendes, V., Morais, P. V., Costa, M. & Verissimo, A. ( 2005; ). Microcella putealis gen. nov., sp. nov., a Gram-positive alkaliphilic bacterium isolated from a nonsaline alkaline groundwater. Syst Appl Microbiol 28, 479–487.[CrossRef]
    [Google Scholar]
  25. Uchida, K. & Aida, K. ( 1984; ). An improved method for the glycolate test for simple identification of acyl type of bacterial cell walls. J Gen Appl Microbiol 30, 131–134.[CrossRef]
    [Google Scholar]
  26. Yoon, J.-H., Kang, S.-J., Schumann, P. & Oh, T.-K. ( 2006; ). Yonghaparkia alkaliphila gen. nov., sp. nov., a novel member of the family Microbacteriaceae isolated from an alkaline soil. Int J Syst Evol Microbiol 56, 2415–2420.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65283-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65283-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error