1887

Abstract

A bacterial strain designated YY287, isolated from food waste compost, was investigated by polyphasic taxonomic approach. The cells were rod-shaped, Gram-negative, non-pigmented, non-spore-forming and non-fermentative. Phylogenetic analyses using the 16S rRNA gene sequence showed that the strain formed a monophyletic branch towards the periphery of the evolutionary radiation occupied by the genus ; its closest neighbours were the type strains DSM 50244 (96.5 %), DSM 7099 (95.4 %), Dant 3-8 (95.2 %) and KCTC 12005 (94.6 %). Strain YY287 was clearly distinguished from all of these strains using phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data and a range of physiological and biochemical characteristics. The major fatty acids were 16 : 0 (33 %), 18 : 17 (13 %) and summed feature 3 (16 : 17 and/or 15 : 0 iso 2-OH; 41 %). The DNA G+C content of the genomic DNA was 62.8 mol%. It is evident from the genotypic and phenotypic data that strain YY287 represents a novel species in the genus , for which the name sp. nov. is proposed. The type strain is YY287 (=BCRC 17659=LMG 24008).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65277-0
2008-01-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/1/251.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65277-0&mimeType=html&fmt=ahah

References

  1. Bauer, A. W., Kirby, W. M. M., Sherris, J. C. & Turck, M. ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45, 493–496.
    [Google Scholar]
  2. Chang, Y. H., Han, J. I., Chun, J., Lee, K. C., Rhee, M. S., Kim, Y. B. & Bae, K. S. ( 2002; ). Comamonas koreensis sp. nov., a non-motile species from wetland in Woopo, Korea. Int J Syst Evol Microbiol 52, 377–381.
    [Google Scholar]
  3. Chen, W. M., Laevens, S., Lee, T. M., Coenye, T., De Vos, P., Mergeay, M. & Vandamme, P. ( 2001; ). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51, 1729–1735.[CrossRef]
    [Google Scholar]
  4. Chou, J.-H., Sheu, S.-Y., Lin, K.-Y., Chen, W.-M., Arun, A. B. & Young, C.-C. ( 2007; ). Comamonas odontotermitis sp. nov., isolated from the gut of the termite Odontotermes formosanus. Int J Syst Evol Microbiol 57, 887–891.[CrossRef]
    [Google Scholar]
  5. Chung, Y. C., Kobayashi, T., Kanai, H., Akiba, T. & Kudo, T. ( 1995; ). Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococcus profundus DT5432. Appl Environ Microbiol 61, 1502–1506.
    [Google Scholar]
  6. De Vos, P., Kersters, K., Falsen, E., Pot, B., Gillis, M., Segers, P. & De Ley, J. ( 1985; ). Comamonas Davis and Park 1962, gen. nov., nom. rev. emend., and Comamonas terrigena Hugh 1962, sp. nov., nom. rev. Int J Syst Bacteriol 35, 443–453.[CrossRef]
    [Google Scholar]
  7. Etchebehere, C., Errazquin, M. I., Dabert, P., Moletta, R. & Muxi, L. ( 2001; ). Comamonas nitrativorans sp. nov., a novel denitrifier isolated from a denitrifying reactor treating landfill leachate. Int J Syst Evol Microbiol 51, 977–983.[CrossRef]
    [Google Scholar]
  8. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  9. GCG ( 1995; ). Wisconsin Package Version 8.1 Program Manual. Madison, WI: Genetics Computer Group.
  10. Gumaelius, L., Magnusson, G., Pettersson, B. & Dalhammar, G. ( 2001; ). Comamonas denitrificans sp. nov., an efficient denitrifying bacterium isolated from activated sludge. Int J Syst Evol Microbiol 51, 999–1006.[CrossRef]
    [Google Scholar]
  11. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. Kluge, A. G. & Farris, F. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  14. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  15. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  16. Powers, E. M. ( 1995; ). Efficacy of the Ryu non-staining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61, 3756–3758.
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  19. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  20. Tago, Y. & Yokota, A. ( 2004; ). Comamonas badia sp. nov., a floc-forming bacterium isolated from activated sludge. J Gen Appl Microbiol 50, 243–248.[CrossRef]
    [Google Scholar]
  21. Wauters, G., De Baere, T., Willems, A., Falsen, E. & Vaneechoutte, M. ( 2003; ). Description of Comamonas aquatica comb. nov. and Comamonas kerstersii sp. nov. for two subgroups of Comamonas terrigena and emended description of Comamonas terrigena. Int J Syst Evol Microbiol 53, 859–862.[CrossRef]
    [Google Scholar]
  22. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65277-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65277-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 251–256

Phylogenetic analysis based on 16S rRNA gene sequences available from the EMBL database.

Antibiograms of strain YY287 and type strains of other species

[single PDF](137 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error