1887

Abstract

A Gram-negative and obligately anaerobic marine bacterium, strain HAW-EB21, was isolated in a previous study from marine sediment from the Atlantic Ocean, near Halifax Harbor, Canada, and found to have the potential to degrade both hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. In the present study, phylogenetic analyses showed that strain HAW-EB21 was only distantly related to the genera and with 6.6–7.5 % and 8.2–10.5 % dissimilarity as measured by 16S rRNA and 23S rRNA gene sequence analyses, respectively. Strain HAW-EB21 displayed unique properties in being psychrotrophic (18.5 °C optimum) and unable to utilize any of the carbon substrates (succinate, -tartrate, 3-hydroxybutyrate, quinate or shikimate) used for isolating members of the genera and . Strain HAW-EB21 utilized glucose, fructose, maltose, -acetyl--glucosamine, citrate, pyruvate, fumarate and Casitone as carbon sources and produced H and acetate as the major fermentation products. Cells grown at 10 °C produced C (30 %), C 7 (15 %) and C (16 %) as major membrane fatty acids. The novel strain had a genomic DNA G+C content of 28.1 mol%, lower than the values of the genera and . Based on the present results, the novel isolate is suggested to be a member of a new genus for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is HAW-EB21 (=DSM 19335=JCM 14977).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65263-0
2009-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/491.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65263-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Olagnon, M., Desbruyères, D., Pagé, A., Barbier, G., Juniper, S. K., Quérellou, J. & Cambon-Bonavita, M.-A. ( 2002; ). Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42, 463–476.[CrossRef]
    [Google Scholar]
  2. Alain, K., Zbinden, M., Le Bris, N., Lesongeur, F., Quérellou, J., Gaill, F. & Cambon-Bonavita, M.-A. ( 2004; ). Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6, 227–241.[CrossRef]
    [Google Scholar]
  3. Bowman, J. P. ( 2001; ). Methods for psychrophilic bacteria. In Methods in Microbiology, vol. 30, pp. 591–615. Edited by J. H. Paul. Cambridge: Academic Press.
  4. Brune, A. & Schink, B. ( 1992; ). Anaerobic degradation of hydroaromatic compounds by newly isolated fermenting bacteria. Arch Microbiol 158, 320–327.[CrossRef]
    [Google Scholar]
  5. Brune, A., Evers, S., Kaim, G., Ludwig, W. & Schink, B. ( 2002; ). Ilyobacter insuetus sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds. Int J Syst Evol Microbiol 52, 429–432.
    [Google Scholar]
  6. Calhoon, D. A., Mayberry, W. R. & Slots, J. ( 1983; ). Cellular fatty acid and soluble protein profiles of oral fusobacteria. J Dent Res 62, 1181–1185.[CrossRef]
    [Google Scholar]
  7. Fay, L. & Richli, U. ( 1991; ). Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr A 541, 89–98.[CrossRef]
    [Google Scholar]
  8. Goffredi, S. K., Orphan, J., Rouse, G. W., Jahnke, L., Embaye, T., Turk, K., Lee, R. & Vrijenhoek, R. C. ( 2005; ). Evolutionary innovation: a bone-eating marine symbiosis. Environ Microbiol 7, 1369–1378.[CrossRef]
    [Google Scholar]
  9. Hofstad, T. ( 1991; ). The genus Fusobacterium. In The Prokaryotes, 2nd, pp. 4114–4126. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer-Verlag.
  10. Janssen, P. H. & Liesack, W. ( 1995; ). Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Arch Microbiol 164, 29–35.[CrossRef]
    [Google Scholar]
  11. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–682. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  14. Ludwig, W., Rossello-Mora, R., Aznar, R., Klugbauer, S., Spring, S., Reetz, K., Beimfohr, C., Brockmann, E., Kirchhof, G. & other authors ( 1995; ). Comparative sequence analysis of 23S rRNA from Proteobacteria. Syst Appl Microbiol 18, 164–188.[CrossRef]
    [Google Scholar]
  15. Moore, W. E. C., Holdeman, L. V. & Kelley, R. ( 1984; ). Fusobacterium. In Bergey's Manual of Systematic Bacteriology, 1st edn, vol 1, pp. 631–637. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  16. Morita, R. Y. ( 1975; ). Psychrophilic bacteria. Bacteriol Rev 39, 144–167.
    [Google Scholar]
  17. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N. & Chandler, R. E. ( 1983; ). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154, 1222–1226.
    [Google Scholar]
  18. Robrish, S. A., Oliver, C. & Thompson, J. ( 1991; ). Sugar metabolism by fusobacteria: regulation of transport, phosphorylation, and polymer formation by Fusobacterium mortiferum ATCC 25557. Infect Immun 59, 4547–4554.
    [Google Scholar]
  19. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  20. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Schink, B. ( 1984; ). Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus. Arch Microbiol 139, 409–414.[CrossRef]
    [Google Scholar]
  22. Schink, B. ( 1992; ). The genus Propionigenium. In The Prokaryotes, 2nd edn, pp. 3948–3951. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  23. Schink, B. & Pfennig, N. ( 1982; ). Propionigenium modestum gen. nov. sp. nov., a new strictly anaerobic, nonsporeforming bacterium growing on succinate. Arch Microbiol 133, 209–216.[CrossRef]
    [Google Scholar]
  24. Sly, L. I., Blackall, L. L., Kraat, P. C., Tian-Shen, T. & Sangkhobol, V. ( 1986; ). The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5, 139–156.[CrossRef]
    [Google Scholar]
  25. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  26. Stieb, M. & Schink, B. ( 1984; ). A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Arch Microbiol 140, 139–146.[CrossRef]
    [Google Scholar]
  27. Tuner, K., Baron, E. J., Summanen, P. & Finegold, S. M. ( 1992; ). Cellular fatty acids in fusobacterium species as a tool for identification. J Clin Microbiol 30, 3225–3229.
    [Google Scholar]
  28. Watson, J., Matsui, G. Y., Leaphart, A., Wiegel, J., Rainey, F. A. & Lovell, C. R. ( 2000; ). Reductively debrominating strains of Propionigenium maris from burrows of bromophenol-producing marine infauna. Int J Syst Evol Microbiol 50, 1035–1042.[CrossRef]
    [Google Scholar]
  29. Zhao, J.-S., Halasz, A., Paquet, L., Beaulieu, C. & Hawari, J. ( 2002; ). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68, 5336–5341.[CrossRef]
    [Google Scholar]
  30. Zhao, J.-S., Greer, C. W., Thiboutot, S., Ampleman, G. & Hawari, J. ( 2004a; ). Biodegradation of nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50, 91–96.[CrossRef]
    [Google Scholar]
  31. Zhao, J.-S., Spain, J., Thiboutot, S., Ampleman, G., Greer, C. & Hawari, J. ( 2004b; ). Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 49, 349–357.[CrossRef]
    [Google Scholar]
  32. Zhao, J.-S., Paquet, L., Halasz, A., Manno, D. & Hawari, J. ( 2004c; ). Reductive metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in Clostridium bifermentans HAW-1 and several other H2 fermentative anaerobic bacteria. FEMS Microbiol Lett 237, 65–72.[CrossRef]
    [Google Scholar]
  33. Zhao, J.-S., Manno, D., Beaulieu, C., Paquet, L. & Hawari, J. ( 2005; ). Shewanella sediminis sp. nov, a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55, 1511–1520.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65263-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65263-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error