1887

Abstract

A Gram-negative and obligately anaerobic marine bacterium, strain HAW-EB21, was isolated in a previous study from marine sediment from the Atlantic Ocean, near Halifax Harbor, Canada, and found to have the potential to degrade both hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine. In the present study, phylogenetic analyses showed that strain HAW-EB21 was only distantly related to the genera and with 6.6–7.5 % and 8.2–10.5 % dissimilarity as measured by 16S rRNA and 23S rRNA gene sequence analyses, respectively. Strain HAW-EB21 displayed unique properties in being psychrotrophic (18.5 °C optimum) and unable to utilize any of the carbon substrates (succinate, -tartrate, 3-hydroxybutyrate, quinate or shikimate) used for isolating members of the genera and . Strain HAW-EB21 utilized glucose, fructose, maltose, -acetyl--glucosamine, citrate, pyruvate, fumarate and Casitone as carbon sources and produced H and acetate as the major fermentation products. Cells grown at 10 °C produced C (30 %), C 7 (15 %) and C (16 %) as major membrane fatty acids. The novel strain had a genomic DNA G+C content of 28.1 mol%, lower than the values of the genera and . Based on the present results, the novel isolate is suggested to be a member of a new genus for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is HAW-EB21 (=DSM 19335=JCM 14977).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65263-0
2009-03-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/59/3/491.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65263-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Olagnon, M., Desbruyères, D., Pagé, A., Barbier, G., Juniper, S. K., Quérellou, J. & Cambon-Bonavita, M.-A.(2002). Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis. FEMS Microbiol Ecol 42, 463–476.[CrossRef] [Google Scholar]
  2. Alain, K., Zbinden, M., Le Bris, N., Lesongeur, F., Quérellou, J., Gaill, F. & Cambon-Bonavita, M.-A.(2004). Early steps in microbial colonization processes at deep-sea hydrothermal vents. Environ Microbiol 6, 227–241.[CrossRef] [Google Scholar]
  3. Bowman, J. P.(2001). Methods for psychrophilic bacteria. In Methods in Microbiology, vol. 30, pp. 591–615. Edited by J. H. Paul. Cambridge: Academic Press.
  4. Brune, A. & Schink, B.(1992). Anaerobic degradation of hydroaromatic compounds by newly isolated fermenting bacteria. Arch Microbiol 158, 320–327.[CrossRef] [Google Scholar]
  5. Brune, A., Evers, S., Kaim, G., Ludwig, W. & Schink, B.(2002).Ilyobacter insuetus sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds. Int J Syst Evol Microbiol 52, 429–432. [Google Scholar]
  6. Calhoon, D. A., Mayberry, W. R. & Slots, J.(1983). Cellular fatty acid and soluble protein profiles of oral fusobacteria. J Dent Res 62, 1181–1185.[CrossRef] [Google Scholar]
  7. Fay, L. & Richli, U.(1991). Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization. J Chromatogr A 541, 89–98.[CrossRef] [Google Scholar]
  8. Goffredi, S. K., Orphan, J., Rouse, G. W., Jahnke, L., Embaye, T., Turk, K., Lee, R. & Vrijenhoek, R. C.(2005). Evolutionary innovation: a bone-eating marine symbiosis. Environ Microbiol 7, 1369–1378.[CrossRef] [Google Scholar]
  9. Hofstad, T.(1991). The genus Fusobacterium. In The Prokaryotes, 2nd, pp. 4114–4126. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer-Verlag.
  10. Janssen, P. H. & Liesack, W.(1995). Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Arch Microbiol 164, 29–35.[CrossRef] [Google Scholar]
  11. Johnson, J. L.(1994). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–682. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  12. Kimura, M.(1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  13. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  14. Ludwig, W., Rossello-Mora, R., Aznar, R., Klugbauer, S., Spring, S., Reetz, K., Beimfohr, C., Brockmann, E., Kirchhof, G. & other authors(1995). Comparative sequence analysis of 23S rRNA from Proteobacteria. Syst Appl Microbiol 18, 164–188.[CrossRef] [Google Scholar]
  15. Moore, W. E. C., Holdeman, L. V. & Kelley, R.(1984).Fusobacterium. In Bergey's Manual of Systematic Bacteriology, 1st edn, vol 1, pp. 631–637. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  16. Morita, R. Y.(1975). Psychrophilic bacteria. Bacteriol Rev 39, 144–167. [Google Scholar]
  17. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A., Stokes, A. N. & Chandler, R. E.(1983). Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol 154, 1222–1226. [Google Scholar]
  18. Robrish, S. A., Oliver, C. & Thompson, J.(1991). Sugar metabolism by fusobacteria: regulation of transport, phosphorylation, and polymer formation by Fusobacterium mortiferum ATCC 25557. Infect Immun 59, 4547–4554. [Google Scholar]
  19. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  20. Sambrook, J. & Russell, D. W.(2001).Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  21. Schink, B.(1984). Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus. Arch Microbiol 139, 409–414.[CrossRef] [Google Scholar]
  22. Schink, B.(1992). The genus Propionigenium. In The Prokaryotes, 2nd edn, pp. 3948–3951. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  23. Schink, B. & Pfennig, N.(1982).Propionigenium modestum gen. nov. sp. nov., a new strictly anaerobic, nonsporeforming bacterium growing on succinate. Arch Microbiol 133, 209–216.[CrossRef] [Google Scholar]
  24. Sly, L. I., Blackall, L. L., Kraat, P. C., Tian-Shen, T. & Sangkhobol, V.(1986). The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods 5, 139–156.[CrossRef] [Google Scholar]
  25. Smibert, R. M. & Krieg, N. R.(1994). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  26. Stieb, M. & Schink, B.(1984). A new 3-hydroxybutyrate fermenting anaerobe, Ilyobacter polytropus, gen. nov. sp. nov., possessing various fermentation pathways. Arch Microbiol 140, 139–146.[CrossRef] [Google Scholar]
  27. Tuner, K., Baron, E. J., Summanen, P. & Finegold, S. M.(1992). Cellular fatty acids in fusobacterium species as a tool for identification. J Clin Microbiol 30, 3225–3229. [Google Scholar]
  28. Watson, J., Matsui, G. Y., Leaphart, A., Wiegel, J., Rainey, F. A. & Lovell, C. R.(2000). Reductively debrominating strains of Propionigenium maris from burrows of bromophenol-producing marine infauna. Int J Syst Evol Microbiol 50, 1035–1042.[CrossRef] [Google Scholar]
  29. Zhao, J.-S., Halasz, A., Paquet, L., Beaulieu, C. & Hawari, J.(2002). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol 68, 5336–5341.[CrossRef] [Google Scholar]
  30. Zhao, J.-S., Greer, C. W., Thiboutot, S., Ampleman, G. & Hawari, J.(2004a). Biodegradation of nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in cold marine sediment under anaerobic and oligotrophic conditions. Can J Microbiol 50, 91–96.[CrossRef] [Google Scholar]
  31. Zhao, J.-S., Spain, J., Thiboutot, S., Ampleman, G., Greer, C. & Hawari, J.(2004b). Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol 49, 349–357.[CrossRef] [Google Scholar]
  32. Zhao, J.-S., Paquet, L., Halasz, A., Manno, D. & Hawari, J.(2004c). Reductive metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in Clostridium bifermentans HAW-1 and several other H2 fermentative anaerobic bacteria. FEMS Microbiol Lett 237, 65–72.[CrossRef] [Google Scholar]
  33. Zhao, J.-S., Manno, D., Beaulieu, C., Paquet, L. & Hawari, J.(2005).Shewanella sediminis sp. nov, a novel Na+-requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55, 1511–1520.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65263-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65263-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error