1887

Abstract

A polyphasic study was undertaken to clarify the taxonomic position of endospore-forming strains 433-D9, 433-E17 and 121-X1. BOX-PCR-generated fingerprints indicated that they may be members of a single species. 16S rRNA gene sequence similarity demonstrated that a representative of this group, 433-D9, is affiliated closely with DSM 16317 (100 %), DSM 16319 (99.8 %) and NRRL BD-87 (97.1 %). Sequence similarities revealed NRRL NRS-1691 and several species as the next nearest relatives. DNA–DNA hybridization results showed that strain 433-D9 is a member of . Detection of -Lys–-Asp-based peptidoglycan in strain 433-D9, DSM 16317 and DSM 16319 was in agreement with their close relationship, but differentiated these strains from NRRL BD-87 and NRRL NRS-1691, for which -Lys–-Glu was reported. A similar quinone system was detected in strains 433-D9, 433-E17, 121-X1, DSM 16317, DSM 16319 and NRRL BD-87. This system, unusual for bacilli, consisted of the major compound menaquinone MK-8 (69–80 %) and moderate amounts of MK-7 (19–30 %). This observation was in contrast to the predominance of MK-7 of the closest relative NRRL NRS-1691, as also reported for representatives of the closely related non-endospore-forming genus . Strains 433-D9, DSM 16317 and DSM 16319 exhibited homogeneous and discriminative polar lipid profiles and fatty acid profiles consisting of major acids i-C and ai-C and moderate amounts of i-C 10 and i-C I/ai-C B that discriminated them from closely related strains such as NRRL BD-87. On the basis of clear-cut discriminative chemotaxonomic markers, we propose strains 433-D9, 433-E17 and 121-X1, DSM 16317, DSM 16319 and NRRL BD-87 to be reclassified within a separate genus. For this new taxon, we propose the name gen. nov., and we propose the reclassification of , and as gen. nov., comb. nov. (the type species of , with the type strain DSM 16317 =LMG 22165), comb. nov. (type strain DSM 16319 =LMG 22166) and comb. nov. (type strain NRRL BD-87 =DSM 15031 =JCM 11077).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65256-0
2007-12-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/12/2729.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65256-0&mimeType=html&fmt=ahah

References

  1. Ahmed, I., Yokota, A., Yamazoe, A. & Fujiwara, T. ( 2007; ). Proposal of Lysinibacillus boronitolerans gen. nov., sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol 57, 1117–1125.[CrossRef]
    [Google Scholar]
  2. Albert, R. A., Archambault, J., Rosselló-Mora, R., Tindall, B. J. & Matheny, M. ( 2005; ). Bacillus acidicola sp. nov., a novel mesophilic, acidophilic species isolated from acidic Sphagnum peat bogs in Wisconsin. Int J Syst Evol Microbiol 55, 2125–2130.[CrossRef]
    [Google Scholar]
  3. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J. ( 1996; ). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef]
    [Google Scholar]
  4. Ash, C., Farrow, J. A. E., Wallbanks, S. & Collins, M. D. ( 1991; ). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit-ribosomal RNA sequences. Lett Appl Microbiol 13, 202–206.
    [Google Scholar]
  5. Ash, C., Priest, F. G. & Collins, M. D. ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64, 253–260.
    [Google Scholar]
  6. Claus, D. & Berkeley, R. C. W. ( 1986; ). Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1140. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  7. Claus, D. & Fritze, D. ( 1989; ). Taxonomy of Bacillus. In Bacillus (Biotechnology Handbooks vol. 2), pp. 5–26. Edited by C. R. Harwood. New York: Plenum.
  8. Collins, M. D. & Jones, D. ( 1981; ). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol Rev 45, 316–354.
    [Google Scholar]
  9. Fahmy, F., Flossdorf, J. & Claus, D. ( 1985; ). The DNA base composition of the type strains of the genus Bacillus. Syst Appl Microbiol 6, 60–65.[CrossRef]
    [Google Scholar]
  10. Farrow, J. A. E., Wallbanks, S. & Collins, M. D. ( 1994; ). Phylogenetic interrelationships of round-spore-forming bacilli containing cell walls based on lysine and the non-spore-forming genera Caryophanon, Exiguobacterium, Kurthia, and Planococcus. Int J Syst Bacteriol 44, 74–82.[CrossRef]
    [Google Scholar]
  11. Fortina, M. G., Pukall, R., Schumann, P., Mora, D., Parini, C., Manachini, P. L. & Stackebrandt, E. ( 2001; ). Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51, 447–455.
    [Google Scholar]
  12. Gordon, R. E., Haynes, W. C. & Pang, C. H.-N. ( 1973; ). The Genus Bacillus. US Department of Agriculture Handbook no. 427. Washington, DC: Agricultural Research Service.
  13. Groth, I., Schumann, P., Weiss, N., Martin, K. & Rainey, F. A. ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46, 234–239.[CrossRef]
    [Google Scholar]
  14. Hess, A., Hollander, R. & Mannheim, W. ( 1979; ). Lipoquinones of some spore-forming rods, lactic acid bacteria and actinomycetes. J Gen Microbiol 115, 247–252.[CrossRef]
    [Google Scholar]
  15. Heyndrickx, M., Lebbe, L., Kersters, K., De Vos, P., Forsyth, G. & Logan, N. A. ( 1998; ). Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48, 99–106.[CrossRef]
    [Google Scholar]
  16. Heyrman, J., Rodríguez-Diaz, M., Devos, J., Felske, A., Logan, N. A. & De Vos, P. ( 2005; ). Bacillus arenosi sp. nov., Bacillus arvi sp. nov. and Bacillus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 55, 111–117.[CrossRef]
    [Google Scholar]
  17. Ishikawa, M., Ishizaki, S., Yamamoto, Y. & Yamasato, K. ( 2002; ). Paraliobacillus ryukyuensis gen. nov., sp. nov., a new Gram-positive, slightly halophilic, extremely halotolerant, facultative anaerobe isolated from a decomposing marine alga. J Gen Appl Microbiol 48, 269–279.[CrossRef]
    [Google Scholar]
  18. Kämpfer, P. ( 1994; ). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17, 86–98.[CrossRef]
    [Google Scholar]
  19. Kämpfer, P., Rosselló-Mora, R., Falsen, E., Busse, H.-J. & Tindall, B. J. ( 2006; ). Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56, 781–786.[CrossRef]
    [Google Scholar]
  20. Lu, J., Nogi, Y. & Takami, H. ( 2001; ). Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on Iheya Ridge. FEMS Microbiol Lett 205, 291–297.[CrossRef]
    [Google Scholar]
  21. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  22. Nakamura, L. K. ( 2000; ). Phylogeny of Bacillus sphaericus-like organisms. Int J Syst Evol Microbiol 50, 1715–1722.
    [Google Scholar]
  23. Nakamura, L. K., Shida, O., Takagi, H. & Komagata, K. ( 2002; ). Bacillus pycnus sp. nov., and Bacillus neidei sp. nov., round-spored bacteria from soil. Int J Syst Evol Microbiol 52, 501–505.
    [Google Scholar]
  24. Nakamura, K., Haruta, S., Ueno, S., Ishii, M., Yokota, A. & Igarashi, Y. ( 2004; ). Cerasibacillus quisquiliarum gen. nov., sp. nov., isolated from a semi-continuous decomposing system of kitchen refuse. Int J Syst Evol Microbiol 54, 1063–1069.[CrossRef]
    [Google Scholar]
  25. Nazina, T. N., Tourova, T. P., Poltaeraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., Lyseko, A. M., Petrnyaka, V. V., Osipov, G. A. & other authors ( 2001; ). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51, 433–446.
    [Google Scholar]
  26. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  27. Ranft, H. & Kandler, O. ( 1970; ). d-Aspartyl-l-alanin als Interpeptidbrücke im Murein von Bacillus pasteurii Migula. Z Naturforsch [C] 28, 4–8 (in German).
    [Google Scholar]
  28. Reddy, G. S. N., Matsumoto, G. I. & Shivaji, S. ( 2003; ). Sporosarcina macmurdoensis sp. nov., from a cyanobacterial mat sample from a pond in the McMurdo Dry Valleys, Antarctica. Int J Syst Evol Microbiol 53, 1363–1367.[CrossRef]
    [Google Scholar]
  29. Rheims, H., Frühling, A., Schumann, P., Rohde, M. & Stackebrandt, E. ( 1999; ). Bacillus silvestris sp. nov., a new member of the genus Bacillus that contains lysine in its cell wall. Int J Syst Bacteriol 49, 795–802.[CrossRef]
    [Google Scholar]
  30. Schleifer, K. H. & Kandler, O. ( 1972; ). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36, 407–477.
    [Google Scholar]
  31. Schlesner, H., Lawson, P. A., Collins, M. D., Weiss, N., Wehmeyer, U., Völker, H. & Thomm, M. ( 2001; ). Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn–d-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51, 425–431.
    [Google Scholar]
  32. Shaw, S. & Keddie, R. M. ( 1983; ). A numerical taxonomic study of the genus Kurthia with a revised description of Kurthia zopfii and a description of Kurthia gibsonii sp. nov. Syst Appl Microbiol 4, 253–276.[CrossRef]
    [Google Scholar]
  33. Shida, O., Takagi, H., Kadowaki, K. & Komagata, K. ( 1996; ). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46, 939–946.[CrossRef]
    [Google Scholar]
  34. Smibert, R. M. & Krieg, R. N. ( 1994; ). Phenotypic characterization. In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood, N. R. Krieg. Washington, DC: American Society for Microbiology.
  35. Spring, S., Ludwig, W., Marquez, M. C., Ventosa, A. & Schleifer, K. H. ( 1996; ). Halobacillus gen. nov., with descriptions of Halobacillus litoralis sp. nov., and Halobacillus trueperi sp. nov., and transfer of Sporosarcina halophila to Halobacillus halophilus comb. nov. Int J Syst Bacteriol 46, 492–496.[CrossRef]
    [Google Scholar]
  36. Stackebrandt, E., Ludwig, W., Weizenegger, M., Dorn, S., McGill, T. J., Fox, G. E., Woese, C. R., Schubert, W. & Schleifer, K.-H. ( 1987; ). Comparative 16S rRNA oligonucleotide analyses and murein types of round-spore-forming bacilli and non-spore-forming relatives. J Gen Microbiol 133, 2523–2529.
    [Google Scholar]
  37. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  38. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  39. Wainø, M., Tindall, B. J., Schumann, P. & Ingvorsen, K. ( 1999; ). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49, 821–831.[CrossRef]
    [Google Scholar]
  40. Wieser, M. & Busse, H.-J. ( 2000; ). Rapid identification of Staphylococcus epidermidis. Int J Syst Evol Microbiol 50, 1087–1093.[CrossRef]
    [Google Scholar]
  41. Wisotzkey, J. D., Jurtshuk, P., Jr, Fox, G. E., Deinhard, G. & Poralla, K. ( 1992; ). Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42, 263–269.[CrossRef]
    [Google Scholar]
  42. Yoon, J.-H., Lee, K.-C., Weiss, N., Kho, Y. H., Kang, K. H. & Park, Y.-H. ( 2001a; ). Sporosarcina aquimarina sp. nov., a bacterium isolated from seawater in Korea, and transfer of Bacillus globisporus (Larkin and Stokes 1967), Bacillus psychrophilus (Nakamura 1984) and Bacillus pasteurii (Chester 1898) to the genus Sporosarcina as Sporosarcina globispora comb. nov., Sporosarcina psychrophila comb. nov. and Sporosarcina pasteurii comb. nov., and emended description of the genus Sporosarcina. Int J Syst Evol Microbiol 51, 1079–1086.[CrossRef]
    [Google Scholar]
  43. Yoon, J.-H., Kang, S. S., Lee, K.-C., Lee, E. S., Kho, Y. H., Kang, K. H. & Park, Y.-H. ( 2001b; ). Planomicrobium koreense gen. nov., sp. nov., a bacterium isolated from the Korean traditional fermented seafood jeotgal, and transfer of Planococcus okeanokoites (Nakagawa et al. 1996) and Planococcus mcmeekinii (Junge et al. 1998) to the genus Planomicrobium. Int J Syst Evol Microbiol 51, 1511–1520.
    [Google Scholar]
  44. Yoon, J.-H., Weiss, N., Lee, K.-C., Lee, I.-S., Kang, K. H. & Park, Y.-H. ( 2001c; ). Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, and reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 2087–2093.[CrossRef]
    [Google Scholar]
  45. Ziemke, F., Höfle, M. G., Lalucat, J. & Rosselló-Mora, R. ( 1998; ). Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48, 179–186.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65256-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65256-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2729 - 2737

BOX-PCR analysis of strains 433-D9, 433-E17 and 121-X1.

Cell shape and spore formation of strain 433-D9 in phase-contrast microscopy after 24 and 72 h of incubation at 25 °C on PCA.

Photographs showing a swab of cells of strain 433-D9 from a heavy growth area after 48 h of incubation on R2A at 25 °C and growth of strain 433-D9 after 120 h of incubation on R2A at 25 °C.

[PDF file of Supplementary Figs S1-S3](291 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error