A novel Gram-negative, non-motile, rod-shaped bacterium, designated CW-KD 4, was isolated from a polluted soil sample collected from Jiangsu Province, China, by using a classic enrichment method. Based on 16S rRNA gene sequence analysis, the novel strain represented a deep-rooting lineage within the class that was clustered with the genera and and some other unidentified bacteria. Polyphasic taxonomic studies revealed that strain CW-KD 4 showed rather distant relationships to its phylogenetically closest neighbours, including the two recognized genera and . Strain CW-KD 4 showed only 89.9 % and 89.7 % 16S rRNA gene sequence similarities to the type species of the genera and , respectively. The predominant isoprenoid quinone of strain CW-KD 4 was Q-8 with minor components including Q-9, MK-7 and MK-6. The major fatty acids were C, C 7 and summed feature 3. The G+C content of the DNA was 65.1 mol%. On the basis of its distinctive phenotypic and genotypic characteristics, strain CW-KD 4 represents a new genus and a novel species in the class , for which the name gen. nov., sp. nov. is proposed. The type strain is CW-KD 4 (=DSM 18980=KCTC 12881=CCTCC AB 206145). In addition, a new family, fam. nov., is proposed to house the genus gen. nov.


Article metrics loading...

Loading full text...

Full text loading...



  1. Busti, E., Cavaletti, L., Monciardini, P., Schumann, P., Rohde, M., Sosio, M. & Donadio, S.(2006).Catenulispora acidiphila gen. nov., sp. nov., a novel, mycelium-forming actinomycete, and proposal of Catenulisporaceae fam. nov. Int J Syst Evol Microbiol 56, 1741–1746.[CrossRef] [Google Scholar]
  2. Ellis, L. B. M., Roe, D. & Wackett, L. P.(2006). The University of Minnesota biocatalysis/biodegradation database: the first decade. Nucleic Acids Res 34, D517–D521.[CrossRef] [Google Scholar]
  3. Felsenstein, J.(1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef] [Google Scholar]
  4. Felsenstein, J.(1985). Conference limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  5. Felsenstein, J.(1993).phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  6. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors)(1994).Methods for General Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  7. Hall, T. A.(1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98. [Google Scholar]
  8. Hu, H.-Y., Lim, B.-R., Naohiro, G. & Koich, F.-J.(2001). Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47, 17–24.[CrossRef] [Google Scholar]
  9. Kimura, M.(1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequence. J Mol Evol 16, 111–120.[CrossRef] [Google Scholar]
  10. Kimura, M.(1983).The Neutral Theory of Molecular Evolution. Cambridge: Cambridge University Press.
  11. Kumar, S., Tamura, K. & Nei, M.(2004).mega3: integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef] [Google Scholar]
  12. Li, W. J., Xu, P., Schumann, P., Zhang, Y. Q., Pukall, R., Xu, L. H., Stackebrandt, E. & Jiang, C. L.(2007).Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57, 1424–1428.[CrossRef] [Google Scholar]
  13. Mandel, M. & Marmur, J.(1968). Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B, 195–206. [Google Scholar]
  14. Marmur, J.(1961). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef] [Google Scholar]
  15. Nedashkovskaya, O. I., Kim, S. B., Suzuki, M., Shevchenko, L. S., Lee, M. S., Lee, K. H., Park, M. S., Frolova, G. M., Oh, H. W. & other authors(2005).Pontibacter actiniarum gen. nov., sp. nov., a novel member of the phylum ‘Bacteroidetes’, and proposal of Reichenbachiella gen. nov. as a replacement for the illegitimate prokaryotic generic name Reichenbachia Nedashkovskaya et al. 2003. Int J Syst Evol Microbiol 55, 2583–2588.[CrossRef] [Google Scholar]
  16. Palleroni, N. J., Port, A. M., Chang, H.-K. & Zylstra, G. J.(2004).Hydrocarboniphaga effusa gen. nov., sp. nov., a novel member of the γ-Proteobacteria active in alkane and aromatic hydrocarbon degradation. Int J Syst Evol Microbiol 54, 1203–1207.[CrossRef] [Google Scholar]
  17. Petit, V., Cabridenc, R., Swannell, R. P. J. & Sokhi, R.-S.(1995). Review of strategies for modelling the environmental fate of pesticides discharged into riverine systems. Environ Int 21, 167–176.[CrossRef] [Google Scholar]
  18. Rosenberg, E.(1992). The hydrocarbon-oxidizing bacteria. In The Prokaryotes, 2nd edn, pp. 446–459. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  19. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  20. Sasser, M.(1990). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20, 16 [Google Scholar]
  21. Stürmeyer, H., Overmann, J., Babenzien, H.-D. & Cypionka, H.(1998). Ecophysiological and phylogenetic studies of Nevskia ramosa in pure culture. Appl Environ Microbiol 64, 1890–1894. [Google Scholar]
  22. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G.(1997). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4888.[CrossRef] [Google Scholar]
  23. Yamaguchi, S. & Yokoe, M.(2000). A novel protein-deamidating enzyme from Chryseobacterium proteolyticum sp. nov., a newly isolated bacterium from soil. Appl Environ Microbiol 66, 3337–3343.[CrossRef] [Google Scholar]
  24. Zhou, Y., Dong, J., Wang, X., Huang, X., Zhang, K.-Y., Zhang, Y.-Q., Guo, Y.-F., Lai, R. & Li, W.-J.(2007a).Chryseobacterium flavum sp. nov., isolated from a polluted soil. Int J Syst Evol Microbiol 57, 1765–1769.[CrossRef] [Google Scholar]
  25. Zhou, Y., Wang, X., Liu, H., Zhang, K.-Y., Zhang, Y.-Q., Lai, R. & Li, W.-J.(2007b).Pontibacter akesuensis sp. nov., isolated from a desert soil in China. Int J Syst Evol Microbiol 57, 321–325.[CrossRef] [Google Scholar]
  26. Zwillich, T.(2000). Hazardous waste cleanup. A tentative comeback for bioremediation. Science 289, 2266–2267.[CrossRef] [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error