Phylogenetic analysis of vibrios and related species by means of gene sequences Free

Abstract

We investigated the use of gene sequences as alternative phylogenetic and identification markers for vibrios. A fragment of 1322 bp (corresponding to approximately 88 % of the coding region) was analysed in 151 strains of vibrios. The relationships observed were in agreement with the phylogeny inferred from 16S rRNA gene sequence analysis. For instance, the , , and species groups appeared in the gene phylogenetic analyses, suggesting that these groups may be considered as separate genera within the current genus. Overall, gene sequences appeared to be more discriminatory for species differentiation than 16S rRNA gene sequences. 16S rRNA gene sequence similarities above 97 % corresponded to gene sequences similarities above 80 %. The intraspecies variation in the gene sequence was about 99 % sequence similarity. The results showed clearly that gene sequences are a suitable alternative for the identification and phylogenetic study of vibrios.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65223-0
2007-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/11/2480.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65223-0&mimeType=html&fmt=ahah

References

  1. Ben-Haim Y., Thompson F. L., Thompson C. C., Cnockaert M. C., Hoste B., Swings J., Rosenberg E. 2003; Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis . Int J Syst Evol Microbiol 53:309–315 [CrossRef]
    [Google Scholar]
  2. Hilario E., Gogarten J. P. 1993; Horizontal transfer of ATPase genes – the tree of life becomes a net of life. Biosystems 31:111–119 [CrossRef]
    [Google Scholar]
  3. Jolley K. A., Feil E. J., Chan M. S., Maiden M. C. 2001; Sequence type analysis and recombinational tests (START). Bioinformatics 17:1230–1231 [CrossRef]
    [Google Scholar]
  4. Kakinuma Y., Igarashi K., Konishi K., Yamato I. 1991; Primary structure of the alpha-subunit of vacuolar-type Na(+)-ATPase in Enterococcus hirae . Amplification of a 1000-bp fragment by polymerase chain reaction. FEBS Lett 292:64–68 [CrossRef]
    [Google Scholar]
  5. Kasimoglu E., Park S. J., Malek J., Tseng C. P., Gunsalus R. P. 1996; Transcriptional regulation of the proton-translocating ATPase ( atpIBEFHAGDC ) operon of Escherichia coli : control by cell growth rate. J Bacteriol 178:5563–5567
    [Google Scholar]
  6. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  7. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [CrossRef]
    [Google Scholar]
  8. Lapierre P., Shial R., Gogarten J. P. 2006; Distribution of F- and A/V-type ATPases in Thermus scotoductus and other closely related species. Syst Appl Microbiol 29:15–23 [CrossRef]
    [Google Scholar]
  9. Naser S., Thompson F. L., Hoste B., Gevers D., Vandemeulebroecke K., Cleenwerck I., Thompson C. C., Vancanneyt M., Swings J. 2005; Phylogeny and identification of enterococci by atpA gene sequence analysis. J Clin Microbiol 43:2224–2230 [CrossRef]
    [Google Scholar]
  10. Olendzenski L., Liu L., Zhaxybayeva O., Murphey R., Shin D. G., Gogarten J. P. 2000; Horizontal transfer of archaeal genes into the deinococcaceae: detection by molecular and computer-based approaches. J Mol Evol 51:587–599 [CrossRef]
    [Google Scholar]
  11. Pitcher D. G., Saunders N. A., Owen R. J. 1989; Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8:151–156 [CrossRef]
    [Google Scholar]
  12. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  13. Thompson F. L., Swings J. 2006; Taxonomy of the vibrios. In The Biology of Vibrios pp 29–43 Edited by Thompson F. L., Austin B., Swings J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  15. Thompson F. L., Hoste B., Vandemeulebroecke K., Swings J. 2001; Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24:520–538 [CrossRef]
    [Google Scholar]
  16. Thompson F. L., Thompson C. C., Li Y., Gomez-Gil B., Vandenberghe J., Hoste B., Swings J. 2003; Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. Int J Syst Evol Microbiol 53:753–759 [CrossRef]
    [Google Scholar]
  17. Thompson F. L., Iida T., Swings J. 2004; Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431 [CrossRef]
    [Google Scholar]
  18. Thompson F. L., Gevers D., Thompson C. C., Dawyndt P., Naser S., Hoste B., Munn C. B., Swings J. 2005; Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115 [CrossRef]
    [Google Scholar]
  19. Vandenberghe J., Thompson F. L., Gomez-Gil B., Swings J. 2003; Phenotypic diversity amongst Vibrio isolates from marine aquaculture system. Aquaculture 219:9–20 [CrossRef]
    [Google Scholar]
  20. Zeigler D. R. 2003; Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65223-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65223-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed