gen. nov., sp. nov., a mesophilic representative of the family Free

Abstract

A mesophilic strain, designated A 9500, was isolated from a soil sample collected from Sobaek Mountain, South Korea, and its taxonomic position was investigated by using a polyphasic approach. The novel strain grew well on different ISP media and no diffusible pigments were produced. The optimum temperature for growth was 32 °C. The aerial mycelium was well developed, but not fragmented. The strain was Gram-positive, non-motile and formed endospores on vegetative and aerial hyphae with a spiny surface. Cell walls of strain A 9500 contained -diaminopimelic acid as the diagnostic amino acid, but no characteristic sugars or other amino acids were found (chemotype-III). The major menaquinone was MK-9(H) and the minor menaquinone was MK-10(H) and they were detected at a ratio of 7 : 3. Phosphatidylethanolamine was the diagnostic phospholipid. The G+C content of the genomic DNA was 39.4 mol%. The major fatty acids were anteiso-C (43.34 %), iso-C (14.23 %) and C (7.90 %), a composition that differed from members of related genera of the family . The novel strain formed a distinct clade in a phylogenetic tree based on 16S rRNA gene sequences. On the basis of a range of phenotypic and genotypic data and on 16S rRNA gene sequence similarities (88.35–90.38 %), it is suggested that strain A 9500represents a novel species in a new genus with the name gen. nov., sp. nov. The type strain of the type species is A 9500 (=KCTC 9933=DSM 45090).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.65194-0
2007-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/11/2660.html?itemId=/content/journal/ijsem/10.1099/ijs.0.65194-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Atlas R. M. 1993; Handbook of Microbiological Media . pp 126–127 Edited by Parks L. C. Florida: CRC Press;
  3. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  4. Cross T., Goodfellow M. 1973; Taxonomy and classification of the actinomycetes. In Actinomycetales : Characteristics and Practical Importance . pp 11–112 Edited by Sykes G., Skinner F. A. London: Academic Press;
  5. Cui X. L., Mao P. H., Zeng M., Li W. J., Zhang L. P., Xu L. H., Jiang C. L. 2001; Streptomonospora salina gen. nov.,sp. nov., a new member of the family Nocardiopsaceae . Int J Syst Evol Microbiol 51:357–363
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  9. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees; a method based on mutation distances as estimated from cytochrome c sequences is of general applicability. Science 155:279–284 [CrossRef]
    [Google Scholar]
  10. Hatayama K., Shoun H., Ueda Y., Nakamura A. 2005; Planifilum fimeticola gen. nov., sp. nov. and Planifilum fulgidum sp. nov., novel members of the family ‘ Thermoactinomycetaceae ’ isolated from compost. Int J Syst Evol Microbiol 55:2101–2104 [CrossRef]
    [Google Scholar]
  11. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  12. Kelly K. L. 1964 Inter-Society Color Council National Bureau of Standards Color-Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  14. Krasil'nikov N. A., Agre N. S. 1964; A new actinomycete genus – Actinobifida n. gen. yellow group – Actinobifida dichotomica n. sp. Mikrobiologiya 33:935–943 (in Russian
    [Google Scholar]
  15. Kroppenstedt R. M. 1982; Separation of bacterial menaquinones by HPLC using reverse phase (RP 18) and a silver loaded ion exchanger. J Liq Chromatogr 5:2359–2387 [CrossRef]
    [Google Scholar]
  16. Kurup V. P., Barboriak J. J., Fink J. N., Lechevalier M. P. 1975; Thermoactinomyces candidus, a new species of thermophilic actinomycetes. Int J Syst Bacteriol 25:150–154 [CrossRef]
    [Google Scholar]
  17. Kurup V. P., Hollick G. E., Pagan E. F. 1980; Thermoactinomyces intermedius , a new species of amylase negative thermophilic actinomycetes. Science – Ciencia Bol Cien Sur 7:104–108
    [Google Scholar]
  18. Lacey J. 1971; Thermoactinomyces sacchari sp. nov., a thermophilic actinomycete causing bagassosis. J Gen Microbiol 66:327–338 [CrossRef]
    [Google Scholar]
  19. Lacey J., Cross T. 1989; Genus Thermoactinomyces Tsiklinsky 1899, 501AL . In Bergey's Manual of Systematic Bacteriology Vol 4 pp 2574–2585 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  20. Lechevalier M. P., Lechevalier H. A. 1970; A critical evaluation of the genera of aerobic actinomycetes. In The Actinomycetales pp 393–405 Edited by Prauser H. Jena: Gustav Fischer;
    [Google Scholar]
  21. Lechevalier M. P., Lechevalier H. A. 1980; The chemotaxonomy of actinomycetes. In Actinomycete Taxonomy pp 227–291 Edited by Dietz X., Thayer Y. Arlington, VA: Society for Industrial Microbiology;
    [Google Scholar]
  22. Matsuo Y., Katsuta A., Matsuda S., Shizuri Y., Yokota A., Kasai H. 2006; Mechercharimyces mesophilus gen. nov., sp. nov. and Mechercharimyces asporophorigenens sp. nov.,antitumour substance-producing marine bacteria, and description of Thermoactinomycetaceae fam. nov. Int J Syst Evol Microbiol 56:2837–2842 [CrossRef]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  24. Nonomura H., Ohara Y. 1971; Distribution of actinomycetes in soil. X. New genus and species of monosporic actinomycetes in soil. J Ferment Technol 49:895–903
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for recosntructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  27. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  28. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  29. Tang S. K., Li W.-J., Dong W., Zhang Y.-G., Xu L.-H., Jiang C.-L. 2003; Studies of the biological characteristics of some halophilic and halotolerant actinomycetes isolated from saline and alkaline soils. Actinomycetologica 17:6–10 [CrossRef]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  31. Tsilinsky P. 1899; On the thermophilic moulds. Ann Inst Pasteur 13:500–505 (in French
    [Google Scholar]
  32. Unsworth B. A., Cross T. 1980; Thermophilic actinomycetes implicated in farmer's lung: numerical taxonomy of Thermoactinomyces species. In Microbiological Classification and Identification pp 389–390 Edited by Goodfellow M., Broad R. G. London: Academic Press;
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  34. Williams S. T., Goodfellow M., Alderson G. 1989; Genus Streptomyces Waksman and Henrici 1943, 339AL . In Bergey's Manual of Systematic Bacteriology vol. 4 pp 2452–2492 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  35. Yoon J.-H., Park Y.-H. 2000; Phylogenetic analysis of the genus Thermoactinomyces based on 16S rDNA sequences. Int J Syst Evol Microbiol 50:1081–1086 [CrossRef]
    [Google Scholar]
  36. Yoon J.-H., Kim I.-G., Shin Y.-K., Park Y.-H. 2005; Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella , on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 55:395–400 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.65194-0
Loading
/content/journal/ijsem/10.1099/ijs.0.65194-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed